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1. Introduction 

The WP7 of LifeCycle focuses on specific methodological aspects of importance for the LifeCycle applied 

work packages (i.e. WP4 to 6 and 8) and life course research in general. It aims at developing an 

integrated analysis strategy to apply causal inference methods, model longitudinal data and health 

trajectories; assessing approaches to analyse multiple exposure and potential mediating data in the 

context of longitudinal modelling; and, at the same time, enhancing, inside and outside LifeCycle, the 

knowledge and use of causal inference approaches and methods to model longitudinal (repeatedly 

assessed data).  

Task 7.2 focuses on different methods for analysing repeatedly assessed data from a theoretical and 

applied approach. Four areas of interest and need were identified early in LifeCycle: (1) understanding 

different methods from a theoretical and applied perspective; (2) understanding the importance of the 

research question, together with the data available data in choosing a method/methods; (3) identifying 

methods for joining repeatedly assessed data from different cohorts together (e.g. doing this across the 

cohorts in EU Child Cohort Network) so that we can establish life course trajectories that go from birth 

to adult life and can assess the relationship of exposures with those (full) life-course trajectories and (4) 

sharing code and practical support so that colleagues within the LifeCycle partnership and beyond can 

apply these analyses, including in DataShield. This deliverable covers these four aspects. Its results will 

also contribute to future WP7 deliverables, specifically to the analyses of the exposome on longitudinal 

(life-course) trajectories (Deliverable 7.3), demonstration of the analytical strategies with tutorials 

(Deliverable 7.4), and the development of courses on causal inference methods and longitudinal 

modelling in the context of life course analyses (Deliverable 7.5). 

2. Work performed 

2.1. Searchable database of method materials of importance for causal inference in life-

course epidemiology  

One of the objectives of WP7 is to enhance the knowledge and use of causal inference approaches, as 

well as methods to model longitudinal data, within LifeCycle. We intend to provide access to all 

members of LifeCycle to a variety of methodology materials on the topic of causal inference and 

longitudinal modelling. For this purpose, we created a searchable database filled in by LifeCycle (mostly 

WP7) experts as they come along with materials of interest for the broad audience of LifeCycle 

members. The materials are selected based on their relevance to the specific research projects 

conducted within LifeCycle and their readability by non-specialists. By accessing the database, any 

member who wants to get familiar with the field can have a rapid overview of the methods and 

challenges. This database can also be the basis for deeper study of the field. 

The web application, hosted at Telecom Italia SPC Cloud infrastructure and available at 

https://lifecycle.cpo.it, was built with Ruby on Rails and MySQL. The interface is user-friendly and 

intuitive with filters and export functionalities (Figure 1). It has been filled by ten contributors since 23 

April 2018 and contains 70 items as of 15 November 2020. Each item is described through 17 features: 

unique id, title of the work, source online, type of work (educational, tutorial, review, or research 

paper), year of publication, topic (causal inference, longitudinal data, or both), authors, reference, key 

words, short summary, comments, open access (yes or no), contains codes for reuse in statistical 
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packages (yes or no), date of entry in the database, date of update, contributing member, and full text 

link (if open access). A total of 87% of the records are open access publications, and 29% of the 

publications contain programming codes.  

Figure 1: Screen shot of the searchable database. 

 

Among the 70 items, 49 have a focus on causal inference, nine on longitudinal modelling, six pertain to 

both topics, and the remain six to the recently added field of exposome and omics. The majority (35 

items) are educational papers or books, while 16 are tutorials, reviews, or textbooks, 11 are applied 

methods papers, and eight are original methods papers.  

Please Note We provide a more detailed description of this datable in the Deliverable 7.1 report, which 

we have submitted alongside this report for deliverable 7.2, and have not repeated all of that detail 

here. The database is relevant to Tasks 7.1, 7.2 and 7.3. 

2.2. Reviews of repeat measures analysis methods of relevance to LifeCycle 

2.2.1 Methods papers published and in progress with preliminary results 

We have two methods papers at an advanced stage. One of these is published on a preprint sever and 

submitted to the American Journal of Epidemiology (AJE) and one is at an advanced stage. Both are 

described here. 

Paper 1: Hughes RA, Tilling K, Lawlor DA. Combining longitudinal data from different cohorts to 
examine the life-course trajectory. MedRxiv 2020 MedRxiv 2020; 

https://medrxiv.org/cgi/content/short/2020.11.24.20237669v1 (under consideration with AJE). 

 

 

 
 

https://medrxiv.org/cgi/content/short/2020.11.24.20237669v1
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Overview 
This paper focuses on methods for combining repeatedly assessed data from several cohorts to 
generate trajectories that cover a larger age span than any of the single cohorts. The key challenges and 
how to approach these are described. These are illustrated in a real data example, which used repeat 
measures of weight from birth to early adulthood from 5 cohorts, and explored the associations of sex, 
ethnicity and parental (family) socioeconomic position with the weight trajectories. Developing these 
methods is a key part of task 7.2 and central to the overall aims of LifeCycle. 
Extended Summary 
Longitudinal data analysis is necessary to reveal changes within the same individual as they age. 
However, few studies are able to capture multiple decades across the life-course. We investigate the 
challenges in combining data from cohorts with repeated measurements that cover different and 
overlapping periods of life and demonstrate methods to overcome these challenges. Our illustrative 
example examines the effects of parental education, sex, and ethnicity on weight trajectories. Data 
were from five prospective cohorts (one in Belarus, 4 from distinct regions of the UK) with data spanning 
from birth to early adulthood during differing calendar periods (1936-1964, 1972-1974, 1991-2015, 
2007-2010). We combined all cohorts into a single dataset and fitted a multilevel model with a nonlinear 
growth trajectory. Three of the key challenges were: (1) Some variables were measured differently 

across the studies. We used data 
harmonisation to derive new ‘harmonised’ 
variables by identifying common elements 
across all studies. (2) Ethnicity and 
maternal education were not measured at 
all by some studies. We used subject-
matter knowledge to derive ethnicity and 
developed a novel method to multiply 
impute individual-level covariates of a 
multilevel model with a nonlinear growth 
trajectory and interactions. (3) Model 
selection based on the combined data was 
time consuming (Box 1).  
To speed up the process we conducted 
model selection on a random sample of 
the combined data, and used the 
remaining data, as a “validation dataset”, 
to evaluate the fit of the top selected 
models. In part these challenges reflect 
the fact that developing life-course 
trajectories from independent studies, by 
definition pools data from heterogenous 
populations (e.g. they must have been 
born during different periods). A key 
strength of our approach is the ability to 
model trajectories over wide age-ranges 
and the sharing of information across 
studies. It also enables direct comparison 
of the same parts of the life-course in 
different geographical regions and time 
periods (e.g., the lower growth trajectory 

 

Box 1. Key challenges 

Data harmonisation 

• Information may be lost during the data harmonisation process in order to include 

cohorts with a relatively crude measure of a variable. 

• Some variables may not be measured by all cohorts. Subject-matter knowledge 

may provide information about their most likely values. 

 

Accounting for the data’s dependence structure 

• The data’s dependence structure must be appropriately modelled in order to 

obtain appropriate standard errors. 

• Reliable estimation of the random effects’ variance components at a particular 

level depends on the number of units at that level and not the total number of 

level-1 observations (e.g., repeated measurements).  

 

Model selection across multiple cohorts 

• Model selection on the combined data from all studies may be impractical due to 

the large volume of data. 

• Two alternatives are: (1) fit the same model separately to each cohort and 

perform model selection on the summed likelihoods across the cohorts. (2) 

Perform model selection on a random sample of individuals, keeping the 

proportion of individuals from each cohort as per the combined data. 

• Model selection based on summed likelihoods may not be feasible when the 

feature under comparison (e.g., nonlinear trajectory) requires each cohort to 

cover the same age range (e.g., restricted cubic splines).  

 

Missing data in the outcome (repeated measurements) and the covariates 

• Determining the amount of missing outcome data is difficult for cohorts without 

a prescribed measurement schedule (such as opportunistic health visits). 

• Likelihood estimation of a multilevel model can utilise all available observed 

outcome data and is valid under the missing at random assumption (i.e., 

differences between the observed and missing data are explained by associations 

with the observed outcome and covariate data). 

• When outcome data are suspected missing not at random, multiple imputation 

(MI) can use information from auxiliary variables (not included in the multilevel 

model) to explain the reasons for the missing data and provide valid inference.  

• Restricting the analysis to those with complete covariate data can result in a 

substantial loss of information especially when covariates are systematically 

missing in some cohorts (missing for all individuals) and/or when there are many 

covariates each with small amounts of missing data. 

• The imputation model of MI should account for the main features of the 

multilevel model (e.g., its multilevel structure, any interactions). 
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between 9-18 years for a UK study of participants born in the early 1900s, compared to a UK cohort of 
participants born in the early-1990s and a Belarus cohort born in the mid-1990s, could be due to 
changes in diet between the mid-1900s and the later 1990s/early 2000s). Our approach can leverage 
several cohorts to inform about life-course trajectories and examine heterogeneity between cohorts to 
shed light on influences on trajectories. 
 
Results 
Table 1 shows the characteristics of the five cohorts contributing to the illustrative example.  
 
Table 1: Characteristics of five cohorts used to generate cross cohort life-course trajectories 

 ALSPAC BCG BiB CHS PROBIT 

Region England Wales England England Belarus 

Calendar period 1990-2012 1972-1979 2007-2015 1936-1964 1996-2016 

Age range 0-20 0-5 0-6 9-18 0-16 

No. participantsa 14,216 951 13,445 1,547 17,046 

Sex      

male 51% 54% 52% 100% 52% 

female 49% 46% 48% 0% 48% 

missing 0% 0% 0% 0% 0% 

Ethnicity      

White 79% 100%b 39% 100%b 100%b 

South Asian 0% 0% 50% 0% 0% 

Other 4% 0% 8% 0% 0% 

missing 17% 0%b 3% 0%b 0% b 

Maternal education      

left school at 15 or 16 55% 0% 43% 0% 4% 

left school at 17 or 18 19% 0% 12% 0% 82% 

degree 11% 0% 21% 0% 14% 

missing 15% 100% 24% 100% 0% 

Paternal  occupation      

class  I or II 22% 17% 13% 55% 11% 

class III 36% 58% 19% 21% 60% 

class IV, V or other 21% 23% 44% 3% 25% 

missing 21% 2% 24% 21% 4% 

Total no. weight measures 157,000 12,737 78,110 89,070 205,864 

Median no. measures per child (IQR) 10 (10) 14 (1) 5 (3) 57 (18) 13 (5) 

Median ALMc in years (IQR) 13.8 (13.1) 5 (0) 4.7 (2.7) 17.8 (1.5) 16.0 (1) 

a: Included in the growth analysis. b: these cohorts had no record of ethnicity. Based on the populations from which they were recruited 
we assigned all participants to White European ethnicity. c: Age at last measurement. ALSPAC: Avon Longitudinal Study of Parents and 
Children, BCG: The Barry Caerphilly Growth study, BiB: Born in Bradford, CHS:  The Christ Hospital School study, PROBIT: the Promotion of 
Breastfeeding Intervention Trial. 

 

Figure 2 shows observed mean growth trajectories among the cohorts. The general trajectory shape was 
nonlinear: curving over in the first year, curving slightly under between ages 5 and 12 years and starting 
to plateau around age 17 years. Compared to ALSPAC and PROBIT, CHS had a lower growth trajectory.  
 
The paper provides very detailed descriptions about model selection. In the illustrative example 
different potential models were compared using a random sample of 15,000 from all of the cohorts 
pooled data (the training dataset). From the model comparisons based on this training dataset, the first- 
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and second-best fitting fractional polynomials were two-degree models with powers 0.5 and 3, and 
powers 0 and 2, respectively, and the first- and second-best restricted cubic splines were models with 7 
and 6 knots, respectively. Figure 3 shows the mean weight trajectories according to the first- and 
second-best fitting fractional polynomial and restricted cubic spline models (generated from fitting the 
models to all of the combined data). 
                                                                                                               
 

 

 
Figure 4 shows predicted mean weight trajectories between children of different cohorts, sexes, ethnic 
groups, and parental education groups (in each case holding all other covariates constant) from the final 
selected model. Weight trajectories were very similar between the cohorts in the first four years of life. 
They had a similar increase between ages 10-15 years for the three cohorts (ALSPAC, CHS and PROBIT) 
that contributed to these ages, but with ALSPAC participants being heaviest, PROBIT in between and 
CHD lightest across this period; for example, at age 15 years the predicted mean difference in weight 
between children from PROBIT and ALSPAC was -0.88 kg [95% confidence interval (CI) -0.44, -1.33 kg]. 
After age 15 there was a slight plateauing in ALSPAC weight increase and by age 20 years very little 
difference in weight between participants in CHS and ALSPAC (mean difference -6.83 kg [95% CI -6.17, -
7.49 kg]). The marked plateauing effect after age 15 for the PROBIT cohort could be due to its limited 
number of measures between 15-20. The weight trajectories of boys and girls were similar until 
adolescence and start to diverge after age 15 years, such that by age 20 the predicted mean difference 
in weight between boys and girls was -2.84 kg [95% CI -1.57, -4.10 kg]. There were very little differences 
between children of different ethnic backgrounds or between those whose parents had different 
educational / SEP levels. However, for ethnicity the majority of participants across the cohorts were 
White European (81% out of the 44,354 children with observed ethnicity or ethnicity assumed to be 
White European). The high proportion of South Asian (mostly, Pakistani) participants in BiB contribute to 
trajectories from age 0 to 6 and it is possible that ethnic differences begin to emerge at older ages. 
Conclusions  
We have shown that careful analysis can harmonise and bring together information from different 
cohorts to inform life-course trajectories. We provide ways to overcome some of the main challenges in 
doing this, but as with all analyses, assumptions should be documented, and sensitivity analyses 
conducted. This approach can then leverage several cohorts to inform about life-course trajectories and 
examine heterogeneity between cohorts to shed light on which early life stressors influence trait 
development and degeneration. These methods will be extremely important to investigators in LifeCycle 

Figure 3: Predicted mean trajectories for the 
best two fitting fractional polynomial and best 

two fitting cubic spline models 

Figure 2: Observed mean trajectories for the 
five cohorts 
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exploring the impact of early life stressors on cardiometabolic, respiratory and neurocognitive and 
mental health life-course trajectories.  

 
Paper 2: Elhakeem A, Tilling K, Hughes R, Cousminer DL, Jackowski SA, Kwong ASF, Grant SF, Baxter-
Jones A, Zemel BS, Lawlor DA. Spline, SITAR and mixture models for describing nonlinear growth 
trajectories: applications to bone mass in 3 different cohort studies. Currently being prepared for 
circulation to co-authors.  
 
Overview 
This extends the work described in Paper 1 above. It describes a wider range of methods that could be 
used for modelling repeatedly assessed data in the single- and multi-cohort setting, including latent 
class and Super Imposition by Translation and Rotation (SITAR) growth curve analysis. A different trait 
(bone mineral content) is used as an illustrative example of the different methods and how to interpret 
results from different methods. The choice of bone-mineral content was motivated by: (i) the 
importance of understanding of life-course trajectories of musculoskeletal measures is increasingly 
recognised as important to understanding healthy aging; (ii) an increasing number of cohorts have 
repeat measurements of bone composition and (iii) analyses of repeat measures of musculoskeletal 
outcomes are less common in the literature than are similar analyses for cardiometabolic, respiratory 
and mental health outcomes. This paper will provide a valuable education/tutorial piece for 
musculoskeletal researchers and researchers working in other health areas for whom analysing 
repeatedly assessed data is new. 
 

Figure 4: Predicted mean trajectories by cohort (top left), child sex (top right), ethnicity (bottom 
left) and parental SEP (bottom right). 
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Extended summary 
Appropriate longitudinal data analysis can improve our understanding of influences on health 
trajectories across the life-course. This paper provides an overview of different approaches for 
describing nonlinear growth trajectories, exemplified by bone mineral content (BMC; grams) from age 5-
40 years in 3 long-running cohort studies (>8.500 study subjects with >37,000 repeated scans). Model 
strengths and limitations, fitting and selection strategies, interpretation, and trajectory visualisation are 
discussed and illustrated, with a comparison of model performance between studies. Joint modelling of 
different cohorts as a single multicohort study is illustrated, and future developments allowing 
amalgamated multilevel modelling of remote data are discussed. Mixed-effects linear spline and natural 
spline models, and Super Imposition by Translation and Rotation (SITAR) growth curve analysis showed 
that BMC increased (nonlinearly) with age and that the levels and rate of change in BMC were greater 
for males than females. Both models showed that the greatest gains were in puberty, for example, the 
mean age at peak bone mineral accrual (from SITAR models with fixed effects for cohort) was 13.8 years 
in males and 12.1 years in females. Peak gains in BMC were followed by periods of decelerating growth 
lasting up to age 30 years. The modelling of heterogeneous growth curves (latent trajectories) identified 
possibly distinct trajectories, which might reflect effects of biology (e.g. puberty timing) and behaviour 
(e.g. exercise) on BMC trajectory. In summary, we present a useful resource for researchers interested 
in describing nonlinear growth. Scripts are provided along with synthetic replicas of the three studies 
which allow the reader to replicate all models and plots in R. 
 
Results 
 
Table 2 shows the characteristics of the three cohorts contributing to the illustrative examples.  
 
Table 1: Characteristics of the 3 cohort studies included in the analysis: Avon Longitudinal Study of Parents and 
Children (ALSPAC), Bone Mineral Density in Childhood Study (BMDCS), Pediatric Bone Mineral Accrual Study 
(PBMAS) 
Study name ALSPAC BMDCS PBMAS 

Design Birth cohort study (started in 

1990-1992) 

Child cohort study (started in 

2002-2003) 

Child cohort study (started 

in 1991) 

Region and country Catchment area of 3 health 

authorities in Southwest 

England, UK 

5 USA clinic centre: Los 

Angeles, Cincinnati, Omaha, 

Philadelphia 

2 elementary 

schools, Saskatoon, 

Saskatchewan, Canada 

Birth years 1990-1992 1985-1997 1983-1976 

Ethnicity 98% white Ethnically diverse 98% white 

DXA device used to 

measure BMC 

Lunar Prodigy Hologic QDR-4500A Hologic QDR-2000 

Mean age at the 

baseline/youngest DXA 

scan (range) 

9.9 years  

(8.8-11.7 years) 

10.8 years  

(6.0-17.0 years) 

11.8 years 

(8.0-15.1 years) 

Mean age at the 

latest/oldest DXA scan 

(range) 

24.6 years 

(22.4-26.5 years) 

16.1 years 

(6.9-23.3 years) 

37.3 years 

(34.3-40.2 years) 

Frequency and maximum 

number of DXA scans 

up to 6 repeat measures at 

mean ages 9.9, 11.7, 13.8, 

15.4, 17.8, and 24.6 years 

up to 7 yearly repeat measures Up to 15 yearly repeats 

(1991-1998, 2003-2005, 

2007-2011 and 2016-2017) 

Number of study 

participants with ≥1 BMC 

measure* 

3888 males 

4007 females 

465 males 

488 females 

112 males 

127 females 
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*Analyses restricted to white ethnicity 
Figure 5 shows observed BMC values among the cohorts, illustrating the age range and the dispersion of 
BMC, and the higher values in ALSPAC, which likely reflect the different device used to measure BMC in 
this cohort compared with the other 2 cohorts. The figure also shows expected evidence of nonlinear 
change in BMC with increasing age. 
 
Figure 5 Scatterplot of observed bone mineral content (BMC) against age by sex and cohort. 

 
 
Figure 6 shows the estimated mean bone mineral content (BMC) trajectories from the best fitting 
multicohort linear and natural spline models with equally spaced and manually selected knots. 
Particularly for the linear spline mixed models, the models with manually selected knots provided a 
better fit and a more appropriate trajectory shape. 
 
Figure 6 Estimated mean bone mineral content (BMC) trajectory from the selected multicohort mixed-
effects linear spline and natural spline models. Mean trajectories are shown in black for males and in 
red for females. Shaded areas around the mean trajectories represent 95% confidence intervals. 
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Figure 7 shows the estimated mean bone mineral content (BMC) trajectories from the best fitting 
multicohort SITAR models. The models show that BMC growth is nonlinear and peaks during puberty. 
 
Figure 7 Estimated mean bone mineral content (BMC) trajectory from the selected multicohort 
selected SITAR (Super Imposition by Translation and Rotation) models. Mean trajectories are 
represented by the solid curves and are shown separately for males and females. The dashed blue curves 
represent BMC velocity (grams/year). The vertical dotted black line indicates age at peak BMC velocity. 

 
Table 3 shows the rates of change in bone mineral content (BMC) during each period from multicohort 
linear spline mixed-effect models with manually selected knots, and the features extracted from 
multicohort SITAR models. Estimates from the linear spline models with manually selected knots 
showed that BMC levels increased up to 30 years old and that gains were greater in males than females 
and peaked later in the males (between 14 to 16 years versus 12 to 14 years). This was consistent with 
SITAR estimated peak BMC accrual and age at peak BMC accrual. 
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Table 3 Rates of change in bone mineral content (BMC) during each period from multicohort linear 
spline mixed-effect models with manually selected knots, and the features extracted from multicohort 
SITAR models. 
 

 Male participants Female participants 

Rate of change in BMC (g/y) from 

multicohort linear spline mixed 

models with 6 manually selected 

knots [(mean (95%CI)] 

  

5 to 10 years 51.2 (44.2 to 58.2) 51.4 (45.3 to 57.5) 

10 to 12 years 157.1 (152.9 to 161.3) 205.6 (202.1 to 209.2) 

12 to 14 years 271.2 (266.7 to 275.8) 236.2 (232.5 to 239.9) 

14 to 16 years 306.1 (300.1 to 312.1) 104.2 (100.0 to 109.6) 

16 to 20 years 88.3 (82.8 to 93.8) 35.0 (30.7 to 39.3) 

20 to 30 years 59.8 (55.3 to 64.2) 49.3 (46.0 to 52.6) 

30 to 40 years -15.4 (-31.8 to 1.0) -8.7 (-23.4 to 5.9) 

   

Features from multicohort SITAR 

models [mean (SD)] 

  

age at peak BMC accrual (years) 13.8 (0.7) 12.1 (0.7) 

peak BMC accrual (grams/year) 459.9 (137.4) 315.5 (105.7) 

𝛼 – size  -4.2 x 10-14 (240.4) 2.0 x 10-13 (193.3) 

𝛽 – timing  3.6 x 10-17 (0.7) -5.2 x 10-16 (0.8) 

𝛾 – intensity  -4.8 x 10-17 (0.3) 3.2 x 10-16 (0.3) 

 
Figure 8 shows the best fitting growth mixture models in each cohort (and sex). Overall, the latent 
trajectory subgroups within each cohort had similar mean levels of BMC at baseline and tended to 
diverge in terms of BMC levels during puberty and converge again in adulthood. Among PBMAS females, 
one group maintained higher levels of BMC from age 15 to 40. 
 
Conclusion and current status of paper 
We have demonstrated the application of four approaches to describing nonlinear trajectory modelling: 
using linear splines, natural splines, SITAR and latent trajectory models. Using BMC as an illustrative 
example the models were applied to each cohort separately and with the three cohorts combined into a 
single multicohort dataset. While we had access to individual-level data from all cohorts, it should be 
straightforward to apply these models to remotely held harmonised data using DataSHIELD, such as in 
LifeCycle (including to other growth processes). We are on course to submit the paper to a preprint 
sever and the European Journal of Epidemiology in January 2021. 
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Figure 8 Estimated mean bone mineral content (BMC) latent trajectories for each cohort and sex from 
the selected growth mixture models. Dotted lines around the mean trajectories represent 95% 
confidence intervals. Colours distinguish between latent trajectories within subplots and should not be 
used to compare between subplots.  
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2.2.2 Reviews for the preparation of a tutorial 

As detailed in Milestone 12, WP7 has been working to produce tutorials in the field of appropriate 

analyses of repeatedly measured traits (Deliverable 7.4). Five areas that WP7 will cover in the tutorials 

were chosen for their relevance to the field of life-course epidemiology and for gaps in the literature on 

how to implement the various methodological strategies. Four of these tutorials are relevant to Task 7.1 

and preparation for those tutorials are described in deliverable 7.1 that is submitted at the same time as 

this deliverable. All five tutorials will aim at comparing different methods and the interpretation of their 

resulting estimates, by providing numerical case studies relevant to life-course epidemiology.  

Below we provide a summary of the preparatory work conducted so far for the development of the 

tutorial on life-course trajectories, which will be delivered as part of Deliverable 7.4 (M60).  

Developing Life-course trajectories of health outcomes 

To fully understand the life-course epidemiology of health and disease one needs repeatedly assessed 

exposure and outcome data across life (ideally from when in utero to adulthood). This would enable the 

study of factors related to adverse development and adverse degeneration in order to fully understand 

how to promote and maintain health across life. No single study has data from being in utero to 

adulthood but across LifeCycle studies we do. Key aims of WPs 4, 5, 6 and 8, are to identify early life 

stressors that influence life-course trajectories of cardiometabolic, respiratory and mental health, and of 

DNA methylation, respectively. This tutorial will describe how to combine outcome data from multiple 

cohorts, where these cohorts each have at least two repeat measurements of the outcome and cover 

different, but overlapping, ages of collection. The methods that will be used are those described in 

Papers 1 and 2 in section 2.2 above.  

We have already conducted considerable work on preparing for these tutorials, through working on 

Papers 1 and 2 (Section 2.2), running a LifeCycle workshop on repeatedly assessed data for life-course 

analyses at the end of the 4th LifeCycle General Assembly (24th October 2018, Barcelona). We are 

developing this further by working closely with DataShield experts. We will create a synthetic dataset 

hosted at UMGC which can be used by researchers in conjuncture with the tutorial. The tutorial will 

provide practical guidance on how to combined repeatedly assessed data from multiple cohorts to 

enable exploration of early life stressors on life-course trajectories, both within a federated system (i.e. 

Datashield) where harmonised data across cohorts can be analysed without the researcher directly 

‘holding’ any individual participant data, as well as without Datashield. The tutorial will demonstrate the 

application within DataSHIELD of the methods described in section 2.2. It will cover data preparation 

and quality control, model selection, sensitivity checks and the preparation of plots and tables. Bespoke 

R functions will be written to streamline these processes, and will be made available to all researchers. 

The tutorial will use the results from the papers described in section 2.2 as case studies and be made 

available to all LifeCycle researchers and partners via the data resource described in section 2.1. 

2.3. Applied examples in LifeCycle 

Some original research articles published by the LifeCycle project have a specific methodological 

component using repeated measurement analyses that has been supported by WP7. We provide three 

published examples below, which illustrating how we have supported repeat measures / trajectories  of 

very types of different data, including repeat ultrasound scan measures of fetal growth, repeat 
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epigenomic (DNA methylation) and repeat metabolomic data. The first of these triangulates different 

causal methods and is therefore relevant to task 7.1 (as well as WP4), the second is relevant to WP8 and 

the third to WP4. 

Applied methods example 1: Brand JS, Gaillard R, West J, McEachan RRC, Wright J, Ellis Voerman E, Felix JF, 
Tilling K, Lawlor DA. Associations of maternal quitting, reducing, and continuing smoking during pregnancy with 
longitudinal fetal growth: Findings from Mendelian randomization and parental negative control studies. PLoS 
Medicine 2019, 16(11): e1002972. doi: 10.1371/journal.pmwd.1002972. 
 
Abstract 

Background: Maternal smoking during pregnancy is an established risk factor for low infant birth 
weight, but data on critical exposure windows and timing of fetal growth restriction are scarce and 
inconsistent. Here we investigate the effect of maternal quitting, reducing and continuing smoking 
during pregnancy on longitudinal fetal growth by triangulating evidence from three analytical 
approaches to strengthen causal inference.  
Methods and findings: We analysed data from 8621 European liveborn singletons in two population-
based pregnancy cohorts (the Generation R Study, The Netherlands 2002-2006 (n = 4682) and the Born 
in Bradford study, United Kingdom 2007-2010 (n= 3939)) with fetal ultrasound and birth anthropometric 
measures, data on parental smoking during pregnancy and maternal genetic data. Associations with 
trajectories of estimated fetal weight (EFW) and individual fetal parameters (head circumference (HC), 
femur length (FL), abdominal circumference (AC)) from 12/16 to 40 weeks (wks)’ gestation were 
analysed using multilevel fractional polynomial models. We compared results from 1). confounder 
adjusted multivariable analyses; 2). a Mendelian Randomization (MR) analysis using maternal rs1051730 
genotype as an instrument for smoking quantity and ease of quitting; and 3). a negative control analysis 
comparing maternal and paternal smoking associations. In multivariable analyses, women who 
continued smoking during pregnancy had a smaller fetal size than non-smokers from early gestation (16-
20 wks) through to birth (global p value for each parameter < 0.001). Fetal size reductions in continuing 
smokers followed a dose-dependent pattern (compared to non-smokers differences in mean EFW (95% 
CI) at 40 wks’ gestation were -144 g (-182 to -106), -215 g (-248 to -182) and -290 g (-334 to -247) for 
light, moderate and heavy smoking, respectively). Overall, fetal size reductions were most pronounced 
for FL. The fetal growth trajectory of women quitting smoking in early pregnancy was similar to that of 
non-smokers, except for a shorter FL and greater AC around 36-40 wks’ gestation. In MR analyses, each 
genetically determined 1-cigarette-per-day increase was associated with a smaller EFW from 20 wks’ 
gestation to birth in smokers (global p = 0.01, difference in mean EFW at 40 wks= -45.4 g (-80.7; -10.2)), 
but a greater EFW from 32 wks’ gestation onwards in non-smokers (global p = 0.03, difference in mean 
EFW at 40 wks = 25.6 (4.6; 46.7)). There was no evidence that paternal smoking was associated with 
fetal growth. Study limitations include measurement error due to maternal self-report and the modest 
sample size for MR analyses resulting in unconfounded estimates being less precise. The apparent 
positive association of the genetic instrument with fetal growth in non-smokers suggests that genetic 
pleiotropy may have masked a stronger effect in smokers.   
Conclusions: A linear dose-dependent effect of maternal smoking with fetal growth was observed from 
the early second trimester onwards independently of observed and unmeasured confounding factors, 
while no major growth deficit was found in women quitting smoking early in pregnancy except for a 
shorter FL during late gestation. These findings reinforce the importance of smoking cessation advice in 
preconception and antenatal care. They provide stronger causal evidence for this advice and in 
particular show the benefit of smoking reduction to improve fetal growth in women who struggle to 
quit. 
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Selected results  
Triangulating evidence from conventional multivariable regression (Figure 9), paternal negative control analyses 
(Figure 10) and Mendelian randomization (see publication) we showed that quitting smoking early in pregnancy 
resulted in fetal growth trajectories similar to non-smokers. For those who continued to smoke throughout 
pregnancy there was a clear dose response of faltering growth in all parameters across pregnancy (see 
publication). 
 

 
 
 
 
 
 
  

Figure 9: Predicted differences in mean fetal size (95% CIs) across gestation comparing pre-pregnancy 
smokers who quit early in pregnancy & those continuing to smoke with non-smokers (reference) 
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Figure 10: . Predicted differences in mean fetal size (95% CIs) across gestation comparing 

mothers and mother’s partners who smoke to non-smokers (reference) 
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Applied methods example 2: Kazmi N, Sharp GC, Reese SE, [37 additional co-authors] Hivert MF*, Gaunt 
TR*, Lawlor DA*, Relton CL* [*Joint Senior Authors]. Hypertensive disorders of pregnancy and DNA 
methylation in newborns. Hypertension 2019; 74:375-383 
 
Abstract 

Hypertensive disorders of pregnancy (HDP) are associated with low birthweight, shorter gestational age 
and increased risk of maternal and offspring cardiovascular diseases later in life. The mechanisms 
involved are poorly understood, but epigenetic regulation of gene expression may play a part. We 
performed meta-analyses in the Pregnancy And Childhood Epigenetics (PACE) Consortium to test the 
association between either maternal HDP (ten cohorts; n=5242 (cases=476)) or pre-eclampsia (PE; three 
cohorts; n=2219 (cases=135)) and epigenome-wide DNA methylation in cord-blood using the Illumina 
HumanMethylation450 BeadChip. In models adjusted for confounders, and with Bonferroni 
correction, HDP and PE were associated with DNA methylation at 43 and 26 CpG sites, respectively. HDP 
was associated with higher methylation at 27 (63%) of the 43 sites and across all 43 sites mean absolute 
difference in methylation was between 0.6 to 2.6%. Epigenome-wide associations of HDP with offspring 
DNA methylation were modestly consistent with the equivalent epigenome-wide associations of PE with 
offspring DNA methylation (R2=0.26). In longitudinal analyses conducted in one study (n=108 HPD cases, 
550 controls), with limited statistical power, there were similar age-related changes in DNA methylation 
in offspring of those with and without HDP up to adolescence. Pathway analysis suggested that genes 
located at/near HDP-associated sites may be involved in developmental, embryogenesis or neurological 
pathways. HDP is associated with offspring DNA methylation with potential relevance to development. 
 
Trajectory methods and selected results 

Here, we have focused on the longitudinal modelling or repeatedly assessed DNA methylation data.  
These data were available in one cohort – the Avon Longitudinal Study of Parents and Children 
(ALSPAC), which included up to three measures of white blood cell DNA methylation at birth (cord-
blood) and mean ages 7 and 17 years, in 658 offspring in whom 108 had been exposed to HDP. 
The CpGs were first linked to the gene symbols using an Illumina mapping file and if unsuccessful were 
annotated to the nearest gene within 10Mb of each CpG. A multilevel model including a random 
intercept (to allow for between-offspring variability in methylation) and a linear regression spline term 
(to allow for linear change between two adjacent measures (e.g. birth and age 7) but differences in the 
magnitude of this over time between age periods (e.g. linear change between birth and age 7 could 
differ to that between age 7 and 17) was fitted to each of these CpGs separately. For example, for CpGs 
found on comparing HDP and normotensive mothers: 

 

𝑚𝑒𝑡ℎ𝑖𝑗 =  𝛽0 +  𝜇0𝑖 +  𝛽1𝐻𝐷𝑃𝑖 +    𝛽2𝑎𝑔𝑒𝑖𝑗 +   𝛽3(𝑎𝑔𝑒𝑖𝑗 − 7)
+

+  𝛽4𝐻𝐷𝑃𝑖𝑎𝑔𝑒𝑖𝑗

+  𝛽5𝐻𝐷𝑃𝑖(𝑎𝑔𝑒𝑖𝑗 − 7) + + 𝑐𝑜𝑛𝑓𝑜𝑢𝑛𝑑𝑒𝑟𝑠 +  𝜀𝑖𝑗  

𝜀𝑖𝑗  ~ 𝑁(0, 𝜎𝜀
2) 

𝜇0𝑖  ~ 𝑁(0, 𝜎𝜇
2) 

where 𝑖 = 1, . . .658 indexes the children in ARIES, 𝑗 = 1,2,3 indexes the measurement occasion and 

(𝑎𝑔𝑒𝑖𝑗 − 7) + is equal to 𝑎𝑔𝑒𝑖𝑗 − 7 when 𝑎𝑔𝑒𝑖𝑗 − 7 is greater than 0, or equal to 0 if it is not, i.e. this 

cannot take a negative value. This term is used to construct a linear spline at age 7. The exact technical 
meaning of each beta coefficient in the above equation is provided in the box below. Once the model is 
fitted, we can calculate the change in methylation from 0-7 for children of non-HDP mothers (𝛽2), HDP 
mothers (𝛽2 + 𝛽4) and the change from 7-17 for children of non-HDP mothers (𝛽2 + 𝛽3) and HDP mothers 
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(𝛽2 + 𝛽3 + 𝛽4 + 𝛽5). To test whether there is a difference in methylation change between 7 and 17, for 
example, we test whether 𝛽4 + 𝛽5 is different from zero (the null). This can be done by comparing (𝛽4 + 
𝛽5)/se(𝛽4 + 𝛽5) to the standard normal distribution, where se is the standard error. 

For each CpG, we 
used the above 
described multilevel 
model, adjusting for 
confounders 
(maternal age, 
parity, maternal 
smoking status, 
gestational diabetes, 
maternal pre-

pregnancy BMI, child sex and six cell counts (i.e. CD4 T cells, CD8 T cells, NK cells, B cells, monocytes and 
granulocytes estimated using the Houseman algorithm) at each of birth, age 7 and age 17. In these 
analyses we adjusted for cell-type using the adult blood reference and Houseman algorithm. While the 
adult reference panel may not be optimal for our cord-blood samples, we used it here to keep estimates 
consistent from birth to age 7 and 17. 

As an illustration of the general pattern of observed results, Figure 11 shows longitudinal changes in 
methylation for the top four CpGs that reached Bonferroni-corrected P-value thresholds in the main 
adjusted HDP cord-blood EWAS meta-analysis. There were similar increases in methylation levels 
between birth and adolescence for most of the 43 CpGs in offspring of mothers who experienced HDP 
and those who did not. For a small number of CpGs this age-related change was weaker and less 
consistent between 7 and 17 than between birth and 7 years. For all but one of the 43 CpGs, there was 
no strong statistical evidence that age-related change differed between offspring of cases and controls, 
suggesting that epigenetic differences persisted, but that this was due to general age-related change 
rather than any further long-term effect of exposure to HDP in utero. For the CpG cg08274637 (near 
DLEU7 gene), there was evidence that offspring of HDP mothers (compared to those whose mothers did 
not experience HDP) had a slightly faster increase in methylation between birth and age 7 (0.27% 
increased methylation change per year, 95% CI 0.13 to 0.41% methylation change per year; P-
value=0.0002). 

  

• 𝛽1 = average difference in methylation between offspring of normotensive and 
HDP mothers at any age 

• 𝛽2 = average change in methylation from birth to adolescence 

• 𝛽3 = average difference between mean change from birth to 7 and mean 
change from 7 to 17 (i.e. a change in slope) 

• 𝛽4 = average difference in methylation change from birth to adolescence 
between HDP mother-offspring and non-HDP mother-offspring 

• 𝛽5 = average difference in the change in slope (i.e. the difference in mean 
change from 0-7 compared with mean change from 7-17) between offspring of 
HDP and non-HDP mothers 
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The figures show methylation (i.e. the proportion of methylated cells) over time for offspring of HDP mothers (dashed (red) 
line) compared with offspring of non-HDP mothers (dashed (blue) line). Ribbons indicate 95% confidence intervals. 

 
 
 
 
Applied methods example 3: Mills HL, Patel N, White SL, Pasupathy D, Briley AL, Santos Ferreira DL, Seed PT, 

Nelson SN, Sattar N, Tilling K, Poston L, Lawlor DA, On behalf of the UPBEAT Consortium. The effect of a 

lifestyle intervention in obese pregnant women on change in gestational metabolic profiles: findings from the 

UK Pregnancies Better Eating and Activity Trial (UPBEAT) RCT. BMC Medicine 2018;17:15. doi: 10.1186/s12916-

018-1248-7 

Abstract 

Background Pregnancy is associated with widespread change in metabolism, which may be more 
marked in obese women. Whether lifestyle interventions in obese pregnant women improve pregnancy 
metabolic profile change is unknown. The objectives of this study were to determine the magnitude of 
change in metabolic measures during obese pregnancy, and indirectly compare these to similar profiles 
in a general (unselected for BMI) pregnant population, and to determine the impact of a lifestyle 
intervention on change in metabolic measures in obese pregnant women. 
Methods Data from an RCT of 1158 obese (BMI≥30 kg/m2) pregnant women who were recruited from 
six UK inner city obstetric departments were used. Women were randomised to either the UPBEAT 
intervention, a tailored complex lifestyle intervention focused on improving diet and physical activity or 
standard antenatal care (control group). UPBEAT has been shown to improve diet and physical activity 
during pregnancy and up to 6-months postnatally in obese women, and reduce offspring adiposity at 6-
months; it did not affect risk of gestational diabetes (the primary outcome). Change in the 

Figure 11: . Longitudinal changes in methylation for four illustrative example CpGs 
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concentrations of 158 metabolic measures (129 lipids, 9 glycerides and phospholipids, and 20 low-
molecular weight metabolites) quantified from Nuclear Magnetic Resonance on three occasions during 
pregnancy, were compared using multilevel models. We focused primarily on the magnitudes and 
precision (95% confidence intervals) of estimates of change and differences between trial arms when 
describing our results. The role of chance was assessed with false discovery rate of 5% adjusted p-
values.  
Results All (extremely large, very large, large, medium, small and very small) VLDL particles increased by 
1.5 to 3 standard deviation units (SD), and IDL, and specific (large, medium and small) LDL particles 
increased by 1-2SD, between 16- and 36-weeks of gestation. Triglycerides increased by 2-3SD,  with 
more modest changes in other metabolites. Indirect comparisons suggest that the magnitudes of 
change across pregnancy in these obese women were 2-3 fold larger than in unselected women (N = 
4260 in cross-sectional and 583 in longitudinal) from an independent, previously published, study. The 
intervention reduced the rate of increase in extremely large, very large, large and medium VLDL, 
particularly those containing triglycerides.  
Conclusion There are marked changes in multiple lipids and lipoproteins and more modest changes in 
other metabolites across pregnancy in obese women, with some evidence that this is more marked than 
in unselected (for BMI) pregnant women. The UPBEAT lifestyle intervention may contribute to a 
healthier metabolic profile in obese pregnant women, but our results require replication. 
 

Selected results 

Figure 12 shows the difference in mean change for each of the 158 metabolites in SD units per 4-weeks 

of gestation between 16- and 36-weeks of gestation comparing those who received the UPBEAT lifestyle 

intervention and those who did not.  
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Figure 12: . Differences in mean change in metabolites (SD per 4-gestational weeks) across 
pregnancy comparing women randomised to the UPBEAT lifestyle intervention to those 

randomised to standard care 
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3. Conclusions 

We have provided in this report a detailed overview of the work that we have, and continue to 

undertake in relation to developing and promoting appropriate methods for analysing repeatedly 

assessed data across cohorts to understand life-course of different outcomes and the early life 

influences on these. Selected methods have been made available to the members of LifeCycle through a 
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web-based database, which will soon be disseminated within the EU Child Cohort Network and the 

broader scientific community. We describe methodological work contributing to three key publications 

relevant to task 7.2 and three illustrative examples of how we have worked with leads from other 

LifeCycle WPs to ensure these methods are appropriately used to address applied research questions.   

We have also described the preparatory work for the tutorial that will form Deliverable 7.4. This, 

together with the tutorials on causal inference, which are described in the report for Deliverable 7.1, 

will provide the research community with detailed methods and motivating examples to encourage and 

facilitate the application of appropriate methods for trajectory analyses and causal inference in life 

course epidemiology.  

Finally, all partners in WP7 are very active in disseminating its work through the organization of 

workshops and training courses, which will be fully described as part of Deliverable 7.5 (due M60). 

 


