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Executive summary  
Task 7.4 aimed at developing tutorials and educational material with empirical applications 
to demonstrate the implementation in specific contexts of causal inference approaches and 
longitudinal data modelling. During the first part of the project, we identified five topics of 
specific interest for the birth cohort research community: (i) Mediation analysis extended to 
multiple mediators; (ii) Development of life course trajectories of health outcomes; (iii) 
Generalizability and transportability of study results; (iv) Regression discontinuity designs to 
strengthen causal inference in life course epidemiology; (v) Triangulation of different 
methods with different sources of bias to improve causal inference. We then prepared five 
tutorials summarizing the main concepts and assumptions and showing empirical 
applications. This material was discussed and disseminated at multiple levels, including at 
the LifeCycle meetings, through the LifeCycle workshops, at conferences, through 
manuscripts, and using the LifeCycle method database. We started working also on an 
additional tutorial on mediation analysis in DataSHIELD, sharing the computer code at a 
workshop organized in conjunction with the last LifeCycle meeting. The overarching aim of 
Task 7.4 was to facilitate the adoption and use of state-of-the-art methods within and 
outside LifeCycle and to promote discussion on their advantages and limitations. Ultimately, 
this will help in identifying causal relationships in birth cohort studies to better inform 
policies. 
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1. Introduction 
WP7 of LifeCycle focuses on specific methodological aspects of importance for the EU Child 
Cohort Network and life course research in general. It aims at developing an integrated 
analysis strategy to apply causal inference methods, model longitudinal data and health 
trajectories; assessing approaches to analyse multiple exposure data in the context of 
longitudinal modelling; and, at the same time, enhancing, inside and outside LifeCycle, also 
through tutorials and workshops, the knowledge and use of causal inference approaches 
and methods to model longitudinal data.  

Task 7.4 aims at developing tutorials and/or educational material with empirical applications 
to demonstrate the implementation in specific contexts of causal inference approaches and 
longitudinal data modelling. This material should be disseminated within LifeCycle and to 
the broader research community outside LIfeCycle. Task 7.4 is also informed by the work 
done under Tasks 7.1 and 7.2 that developed the analysis strategy (see deliverables 7.1 and 
7.2).  

 
2. Identification of the specific topics and data availability for the tutorials  

The specific topics for the tutorials were identified following a process described in the 
Milestone 12 (submitted in December 2019). Potential topics were discussed during the 
WP7 sessions at the LifeCycle meetings, the LifeCycle workshops, and the WP7 telephone 
conferences. We considered: (i) participants' inputs, (ii) the specific aims of WP4 (Early-life 
stressors and cardio-metabolic health life course trajectory), WP5 (Early-life stressors and 
respiratory health life course trajectories), WP6 (Early-life stressors and mental health life 
course trajectory), and WP8 (DNA methylation and gene expression in life-course health 
trajectory), (iii) emerging topics in the epidemiological literature of interest for life course 
epidemiology, and (iv) materials available in the searchable database of method materials of 
importance for life course epidemiology, developed and maintained within the framework 
of tasks 7.1 and 7.2. 
 
The following topics were identified: 1. Mediation analysis extended to multiple mediators; 
2. Developing life course trajectories of health outcomes; 3. Generalizability and 
transportability of study results; 4. Use of non-genetic instrumental variable approaches 
(policy-related instrumental variables and regression discontinuity) to strengthen causal 
inference in life course epidemiology, then further focused on regression discontinuity; 5. 
Triangulation of different methods with different sources of bias to improve causal 
inference.  

Following the preparation of the dsMediationClient DataSHIELD package, in 2021 mediation 
analysis in DataSHIELD was identified as a topic of interest for an additional tutorial.  
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3. Tutorials and applied examples 
 

3.1 Mediation analysis extended to multiple mediators (1) 
Mediation analysis aims at estimating to what extent the effect of an exposure on an 
outcome is explained by a set of mediators on the causal pathway between the exposure 
and the outcome. In this context, the total effect of the exposure on the outcome can be 
decomposed into the natural indirect effect, i.e. the effect explained by the mediators 
jointly, and the natural direct effect, i.e. the effect unexplained by the mediators. However 
finer decompositions are also possible in presence of independent or sequential mediators. 
As sequential mediation analysis is increasingly common in epidemiology, applied 
researchers have to interface with difficulties related to the application, implementation, 
and interpretation of the methods pro- posed in literature. We review four statistical 
methods to analyse multiple sequential mediators, all based on the counterfactual 
framework: the inverse odds ratio weighting approach (2), the inverse probability weighting 
approach (3), the imputation approach (4), and the extended imputation approach (5). 
These approaches are described, compared and implemented using a case-study with the 
aim to investigate the role of adverse reproductive outcomes and infant respiratory 
infections on infant wheezing in the NINFEA birth cohort. A DAG depicting the case-study 
used in the tutorial is reported in Figure 1. 
 

 
Figure 1. DAG representing the hypothesized structure of the case study. For the sake of simplicity the confounders C are 

not shown.  
 

Table 1 reports the main results for the different methods: IORW (Inverse odds ratio 
weighting), IPW (Inverse probability weighting), imputation approach, marginal and 
conditional effects. In Table 2, the imputation approach is used to further decompose 
between M1 and M2.   
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Table 1. Estimates of total, direct and indirect effects of maternal depression or anxiety in pregnancy on the risk of 

infant wheezing between 6 and 18 months of age using inverse odds ratio weighting, inverse probability weighting and 

the imputation approach.  

M1: adverse reproductive outcomes. M2: infant lower respiratory infections. Data from the NINFEA birth cohort. 

 Through M1 Through M1 and M2 

 PR* 95% CI* PR 95% CI* 

Conditional effect IORW* approach 

Pure direct effect 1.59 1.27-1.94 1.57 1.25-1.92 

Total indirect effect 1.03 0.94-1.12 1.05 0.95-1.15 

Total effect 1.64 1.33-2.00 1.64 1.33-1.97 

Marginal effect   IPW** approach 

Pure direct effect 1.60 1.30-1.94 1.57 1.27-187 

Total indirect effect 1.02 0.99-1.04 1.04 0.99-1.09 

Total effect 1.63 1.33-1.98 1.63 1.31-195 

Conditional effect   Imputation approach 

Pure direct effect 1.60 1.31-1.94 1.57 1.26-1.90 

Total indirect effect 1.02 1.01-1.05 1.05 1.01-1.09 

Total effect 1.64 1.33-1.99 1.64 1.33-1.99 

Marginal effect   Imputation approach 

Pure direct effect 1.60 1.30-1.91 1.57 1.24-1.88 

Total indirect effect 1.02 1.00-1.04 1.04 0.99-1.09 

Total effect 1.63 1.33-1.95 1.62 1.29-1.95 

PR: prevalence ratio; CI: confidence interval calculated by bootstrap 

 
Table 2. Estimates of conditional total, direct and indirect effects of maternal depression or anxiety in pregnancy on the 

risk of infant wheezing between 6 and 18 months of age using the extended imputation approach.  
M1: adverse reproductive outcomes. M2: infant lower respiratory infections. Data from the NINFEA birth cohort. 

 Extended imputation approach 

Conditional effect PR* 95% CI* 

Pure direct effect 1.57 1.28-1.86 

Total indirect effect through M1  and M2 jointly 1.05 1.00-1.09 

Total indirect effect through M1   1.00 0.99-1.00 

Partial total indirect effect through M2   1.05 1.00-1.09 

Total effect 1.64 1.34-1.96 

PR: prevalence ratio; CI: confidence interval calculated by bootstrap 
 
3.2 Developing life course trajectories of health outcomes (6) 
Longitudinal data are necessary to reveal changes within an individual as he or she ages. 
However, rarely will a single cohort study capture data throughout a person’s entire life 
span. Here we describe in detail the steps needed to develop life-course trajectories from 
cohort studies that cover different and overlapping periods of life. Such independent studies 
are probably from heterogenous populations, which raises several challenges, including: 1) 
data harmonization (deriving new harmonized variables from differently measured variables 
by identifying common elements across all studies); 2) systematically missing data (variables 
not measured are missing for all participants in a cohort); and 3) model selection with 
differing age ranges and measurement schedules. We illustrate how to overcome these 
challenges using an example which examines the associations of parental education, sex, 
and race/ethnicity with children’s weight trajectories. Data were obtained from 5 
prospective cohort studies (carried out in Belarus and 4 regions of the United Kingdom) 
spanning data collected from birth to early adulthood during differing calendar periods 
(1936–1964, 1972–1979, 1990–2012, 1996–2016, and 2007–2015). Key strengths of our  
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approach include modelling of trajectories over wide age ranges, sharing of information 
across studies, and direct comparison of the same parts of the life course in different 
geographical regions and time periods. We also introduce a novel approach of imputing 
individual-level covariates of a multilevel model with a nonlinear growth trajectory and 
interactions. Figure 2 demonstrates how the information shared by the 5 cohorts is 
combined to identify the predicted weight trajectories according to selected covariates.  

 

 
Figure 2. Predicted mean weight trajectories of children in 5 cohort studies according to cohort (A), child’s sex (B), child’s 

race/ethnicity (C), and parental education and employment status (D).  
 

3.3 Generalizability and transportability of study results (7) 
Interest in external validity of study findings has increased in recent years, leading to a 
multiplication of theoretical publications in the field, as well as raising concerns on how well 
target populations of health interventions are represented in study samples. Generalizability 
addresses the feasibility of applying a study finding to the broader population from which 
the study sample is a subset, while transportability focuses on the setting where the study 
sample is at least partly external to the population of interest. The design and timeline of 
clinical trials often allows to generalize the findings to the source population as long as it is 
clearly defined. In large population-based, observational epidemiological studies, 
transportability becomes more relevant as the intent is often to quantify associations 
between an exposure and an outcome in contemporary populations of interest to inform 
decision-makers. This is particularly true for life-course epidemiology, where long-term 
longitudinal data collection is in play. Transportability offers the ability to assess an 
association in different populations, under certain assumptions often not more stringent 
than those required for generalizability. In this paper we review the conceptual framework 
and assumptions behind transportability of results from a population-based study sample to 
a population of interest in an observational setting. We detail one method through an 
applied example, where internally validity was constructed for illustrative purposes. 
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There are several mechanisms that may affect transportability: the context, the dynamic 
nature of the populations, the intentional definition of the target and study populations, 
and the unintentional selection from the source to the study population. Some of these 
mechanisms, especially the latter but potentially all of them, are also potential sources of 
selection bias that may affect the internal validity of the study estimates. In these instances, 
the selection is affected by the variables included in the data generating model, rather than 
being an external cause of the distribution of the variables.  

External validity depends, in essence, on the difference between the target population and 
the study population, and on how this difference can modify the effect of the exposure on 
the outcome. Thus, reasoning on external validity goes beyond the structure of the 
population of interest, namely the target population. It requires the choice of at least one 
study population from which transportability of the estimates to the target population is 
possible. It follows that external validity issues involve considering the structure of at least 
two populations, the target and the study population, and their relevant differences.  

Classical DAGs are insufficient to depict the whole process and cannot be used to judge on 
the validity of the inference across populations. For this reason, Judea Pearl and his 
colleagues have introduced the notion of selection diagrams, which are causal diagrams 
augmented with a set of variables that depict the mechanism underlying the relevant 
differences between the target and the study population (8). The graphical rules that are 
used in DAGs to reason on internal validity can be adapted to understand in selection 
diagrams if and under what conditions an estimate can be transported from a study to a 
target population. The focus is on the presence of open paths between the S-variables and 
Y. Specifically, an estimate is directly transportable using recalibration techniques if there 
are no open paths from S to Y after removing all variables pointing towards the exposure A 
and conditioning on Z. According to this rule the causal effect is transportable in Figure 3. 

 

 
Figure 3. Selection diagram of a transportable causal A-Y estimate. S represents the difference between the target and 

the study population. Z1 and Z2 are measured.  
 

To show the applicability of one selected method for transportability, we used data from 
the Piedmont Birth Register (PBR) (the target population) and the NINFEA study (the study 
population). Compulsory computerized birth registration was established in the whole of 
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Italy in 2001 and in the Piedmont area it is of particularly high quality and completeness. We 
used PBR data of 2019 including 27852 pregnancy records. The PBR holds information on 
maternal and child/delivery characteristics. Specifically, data on parents’ age, educational 
level and occupation were available, as well as maternal smoking, alcohol consumption, 
weight gain, and intake of folic acid during pregnancy. Information on the reproductive 
history of the mother (i.e. parity, previous miscarriages and use of infertility treatment) and 
information on reproductive outcomes (i.e. type, gestational age, birth size) is also recorded 
in the PBR. NINFEA is a web-based birth cohort with the aim of investigating the effects of 
early-life exposures on the health of newborns, children, adolescents, and adults. Cohort 
members are children of mothers recruited between 2005 and 2016 in Italy who completed 
a first online questionnaire at any time during their pregnancy on general health and 
exposures before and during pregnancy. Further follow-up information is obtained with 
repeated questionnaires when their child turns 6 months, 18 months, 4, 7, 10 and 13 years 
of age. The NINFEA cohort included 4052 (singleton) pregnancies after exclusion of births 
occurring outside Piedmont.  

The aim of the applied example is to transport the risk difference in the prevalence of the 
outcome of interest between exposed and unexposed subjects among the PBR using data 
available from the NINFEA cohort. In order to guarantee the internal validity of the causal 
estimate in the NINFEA cohort, we simulated the exposure and the outcome, both binary, 
under different scenarios, and we kept the covariates’ distribution as observed in the two 
populations. We selected three common confounders/effect modifiers of the exposure-
outcome association, the maternal age, parity and education at the beginning of pregnancy. 
As opposed to the PBR, members of the NINFEA cohort study originate from a selected 
sample of the source population, with participation strongly associated with socioeconomic 
factors, such as a high educational level. As reported in Table 3, the participants of NINFEA 
were more highly educated compared to PBR (64% vs 30%), more likely to be primiparous 
(74% vs 50%), and slightly older. 

 
Table 3. Observed distribution of covariates in the NINFEA cohort and the Piedmont Birth Register (PBR) 

 NINFEA (N=4052) PBR (N=26909) 

   

Maternal age (median, IQR) 33(30-36) 32(28-36) 

Parity (N, %)   

0 2994 (73.9) 13332 (49.5) 

1 868 (21.4) 9869 (36.7) 

2+ 198 (4.9) 3708 (13.8) 

Maternal education (N, %)   

High 2614 (64.5) 8124 (30.2) 

Medium 1267(31.3) 11989 (44.5) 

Low 171(4.2) 6796 (25.2) 

We used the targeted maximum likelihood estimator (TMLE) to transport the average causal 
effect of the exposure on the outcome from the NINFEA cohort to the PBR population (9). It 
is a semiparametric double/multiple robust method that improves the chances of correct 
model specification by allowing for flexible estimation using machine-learning algorithms. 
The risk difference in the NINFEA cohort was 14.0% (95% CI: 11.5%-17.1%). When  
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transported to the PBR population, the risk difference was 16.5% (95% CI: 11.9%; 21.0%). In 
our setting, we could calculate the estimate directly in the PBR population. The risk 
difference was 16.6% (95% CI: 15.5%-17.7%), i.e. very close to the estimate using the 
transporting method. 

In summary, reasoning on transportability allows to clearly formulate hypotheses on the 
generalizability of the results obtained from a study sample. Available methods further offer 
the potential to transport the estimates to contemporary populations. Applying these 
methods while transparently listing the assumptions made will be invaluable for health 
policy decision-makers using results from life-course epidemiology research. 

 

3.4 Regression discontinuity (10) 
Regression discontinuity design (RDD) is a quasi-experimental approach, applied in 
circumstances where an exogenous source of variation arises from a continuously measured 
assignment variable with a clearly defined cut-off point above or below which the 
population is at least partially assigned to a treatment or exposure. The assignment variable 
creates a discontinuity in the probability of exposure at the threshold, where the direction 
and magnitude of the jump is a direct measure of the causal effect of the exposure on the 
outcome for subjects near the cut-point. When the assignment rule perfectly determines 
the exposure (from 0 to 1 at the cut-off) regression discontinuity takes a sharp design. This 
means that the exposure assignment and the actual exposure status coincide (e.g., imposed 
policy measures). If the assignment rule affects the probability of exposure creating a 
discontinuous change at the threshold, without an extreme 0 to 1 jump, regression 
discontinuity takes a fuzzy design (e.g., optional participation in programs). Given the 
peculiarities of the design it has been widely applied in the context of natural experiments 
and it has become extremely popular in the econometrics, educational and social research 
exploiting the threshold rules often used by educational institutions, public and private 
insurance schemes, governmental welfare programs and social policies. Although in many of 
these settings the main outcomes of interest were health outcomes, RDD is still rarely used 
in health and epidemiology research.  
We provide an overview of the RDD, highlighting its underlying assumptions, approaches for 
testing the assumptions and the validity of the design, its advantages and limitations. Given 
a growing number of birth cohorts and multiple birth cohort consortia being established to 
study the effects of early life exposures on later health outcomes, we  use and update a 
recent systematic review on the application of RDD in healthcare research, focusing on the 
assignment variables and the interventions/exposures that have been investigated and that 
could serve as design models in the context of perinatal epidemiology and birth cohort 
research (11). The RDD is depicted using a DAG in Figure 4.  
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Figure 4. Causal directed acyclic graph of the regression discontinuity design. X represents the assignment variable which 

cut-off value c determines the eligibility criteria (D) for an exposure / treatment (E). Y denotes an outcome, while U 

represents measured and unmeasured confounding factors. Panel A: Directed acyclic graph representing a causal model 

underlying a regression discontinuity design. Panel B: Causal graph for the regression discontinuity design in the close 

vicinity around the assignment variable cut-off. Note that if the assignment rule is deterministic (sharp regression 

discontinuity design) D is equal to E. 
 

The main conditions and assumptions of RDD and information on whether these are 
testable empirically in the data are summarized in Table 4. Estimating the causal effect 
under the fuzzy design requires additional assumptions, including (i) the continuity of the 
potential outcomes at the cut-off, (ii) the monotonicity of the treatment selection response 
to the assignment variable at the cut-off, and (iii) the local exclusion restriction assumption. 
 
Table 4. The main conditions and assumptions of the Regression Discontinuity Design (RDD) 

 Description Empirical testing 

Assignment rule condition A continuous pre-exposure variable with a clearly defined cut-off 
value for the exposure assignment 

Yes 

The same cut-off value is not used to assign the individuals to other 
exposures  

No (theoretical only) 

Lack of discontinuities other than the one at the cut-off Yes 

Lack of manipulation in the 
assignment variable 

The cut-off value is exogenous – unrelated to the individuals’ value 
of the assignment variable, and the individuals’ assignment variable 
values are not determined by the cut-off of the assignment variable 

Yes (indirectly) 

Exchangeability around the 
assignment variable cut-off 

Similarity of the individuals close to the cut-off in the observed 
characteristics 

Yes 

Similarity of the individuals close to the cut-off in the unobserved 
characteristics 

No 

The outcome probability is continuous at the cut-off in the absence 
of exposure 

Yes 

 

The key step in RDD is the identification of relevant assignment variables that meet the 
criteria and assumptions reported in Table 4. Table 5 lists examples from the literature that 
are of relevance in the context of birth cohort research. Advantages and limitation of the 
RDD approach are summarized in Figure 5.  
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Table 5. Some of the assignment variables and exposures as possible Regression Discontinuity Design (RDD) models in 

perinatal epidemiology and birth cohort research 

Assignment variable Determined cut-off values Possible exposures / interventions 

Birth weight Low-birth weight (<2500 grams) 
Very low birth weight (<1500 grams) 
Extremely low birth weight (<1000 grams) 
High birth weight (>4000 grams) 

Extra neonatal care 
Neonatal intensive care unit 
Rooming-in and mother-child bonding 
Breastfeeding 
Caesarean section 
Treatments (e.g., probiotic supplementation, 
surfactant therapy) 
Health insurance and supplemental benefits  

Gestational age Preterm (<37 gestational weeks) 
Very preterm (<32 gestational weeks) 
Extremely preterm (<28 gestational weeks) 

Maternal age at 
conception 

<18 years 
>35 years 
>40 years 

Minimum cigarette/alcohol purchase age 
Screening and procedures for high-risk 
pregnancies 

Socioeconomic measures 
(e.g., family income) 

Setting-specific Social, welfare, and cash transfer programs 
Health insurance policies 

Parity Setting-specific 
Age or  
date/year of birth 

Setting-specific Introduction of: 
a. Vaccination campaigns  
b. Pregnancy-specific guidelines  
c. Maternity/paternity leave policies 
d. Child-support grants  
e. Social and welfare programs  

Clinical measures 
(e.g., blood pressure, 
blood glucose levels) 

Setting-specific Treatment initiation 

Environmental measures 
(e.g., air-pollution levels) 

Setting-specific Local interventions (e.g., to reduce air-pollution) 

 

 

 

 

 

 

 

 
Figure 5. Summary of Regression Discontinuity Design (RDD) advantages and limitations.  

 

 

 

 

 
Advantages 

 
 Relatively weak and testable assumptions 

 Strong internal validity 

 Intuitive interpretation 

 Transparent and simple graphical representation 

 
Limitations 
 

 Low statistical power 

 Limited external validity (geographic- and time-specific settings) 

 The estimated causal effect is local 

 Contamination by other exposures/interventions 

 Rarity of settings outside of policy and program evaluations 
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3.5 Triangulation of different methods with different sources of bias to improve causal 

inference (12) 
Over the last 5 years, we and others have encouraged the use of triangulation to improve 
causal understanding in epidemiology, in order to identify better targets for intervention 
development to prevent and treat disease. The idea behind triangulation is to integrate 
results from several different approaches (i.e. different study designs, analytical methods 
and data sources) where each approach has different key sources of potential bias that are 
unrelated to each other and ideally would bias findings in different directions (13). If the 
results of different approaches all point to the same conclusion, this strengthens confidence 
in that conclusion. When results from different approaches are inconsistent, a thorough and 
specific assessment of risk of bias of each approach should help to determine what 
subsequent research is needed to obtain a more robust causal answer. Triangulation is 
increasingly invoked in epidemiological research but even in our own work, the term seems 
to refer to a wide-range of very different materials and methods, from the comparison of 
results from two or three methods applied to the same data at one end of a spectrum (we 
refer to this as ‘Internal triangulation) to a much more systematic approach that aims to 
integrate all currently available evidence (‘External validation’).  The former is more 
common, and indeed has been done for decades, often with no declaration that this is 
triangulation. Given this diverse use of the term ‘triangulation’, the aim of this paper is to 
provide a framework for triangulation that could be used across the spectrum. In section 1 
we define different types of triangulations and their strengths and limitations. We 
emphasise the importance of defining the type that is planned, acknowledging that there is 
a spectrum from the focused internal to focused external triangulation. For example, in a 
previous study of the effect of maternal circulating 25-Hydroxy Vitamin D and calcium on 
offspring birth weight, we combined Mendelian randomization analyses in data that we had 
access to, with a search for randomised controlled trial evidence of maternal pregnancy 
supplementation for these exposures. Ideally one might combine internal and external 
triangulation. Section 2 summarises steps in the triangulation process, emphasising the 
importance of publishing protocols/analysis plans prior to starting data analyses, as we have 
increasingly done. In this section we emphasise the importance of blind specific risk of bias 
assessment; blind meaning that the assessment is done before analyses and sharing of 
results and specific, for example by agreeing and specifying sources of selection bias and 
specific confounders, rather than defining these based on available data or declaring that 
residual bias has to be present in any observational study. We provide references/links to 
existing risk of bias tools for different methods, including Mendelian randomization and 
modifications of tools for some methods (e.g. within sibship and negative control analyses). 
In Section 3, the final section, we describe potential future plans, including methods that 
could be developed for obtaining a quantified causal effect estimate from very diverse 
design/analytical approaches and for including the potential effects of bias in this 
quantification and the use of Multi parameter evidence synthesis (MPES) in external 
triangulation. We use published and some novel examples to illustrate the use of the 
framework. Table 6 summarises the strengths and limitations of internal and external 
triangulation. 
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Table 6. Relative strengths and limitations of internal and external triangulation 

Internal triangulation (applying different approaches to data 
the researchers have access to) 

External triangulation (systematically searching for and 
integrating all available studies that are relevant to the 
research question) 

Strengths 

 Efficient (relatively quick and easy) 

 More robust than relying on just one approach 

Strengths 

 Most robust approach 

 Little cherry picking of which methods/approaches 
to include 

Limitations / challenges 

 May miss key information that would change 
conclusions 

 Given data is known to researchers the approaches 
that are applied might be influenced by knowledge 
of the data 

Limitations / challenges 

 Likely to be very time consuming 

 As the search is planned to be very extensive the 
time needed to review, extract data and undertake 
analyses may mean that several key new studies 
have been published by the time this is completed. 
This cycling could continue for ever. Open 
triangulation could handle this. 

 The more studies and approaches included the more 
likely there are to be inconsistencies (even when 
taking account of risk of bias)   

 

Table 7 summarises key steps in the process for triangulation of an internal and external 
triangulation. These can be adapted for types that fall between the definite internal and 
definite (full) external triangulation types. Whilst the steps are linear in time, as will all 
research, the process is often iterative. For example, applying specific risk of bias 
assessments to approaches that will be used with existing data (internal) or to papers from 
systematic searches (external) may reveal additional sources of bias that were not initially 
thought of when preparing the initial template for reporting this information. Comments 
from co-authors and reviewers may lead to changes to analysis plans. These and other 
reasons will mean going back and changing earlier steps. This highlights the importance of 
publishing the protocol/analysis plan and adding to that any subsequent changes with their 
justification, thus avoiding unrevealed data driven methods.   

 
Table 7. Steps in triangulation  

Internal Triangulation External Triangulation 

Define specific causal question  Define specific causal question 

Agree different methods that could be triangulated in 
available data 

Develop systematic search strategy and complete initial search 
to identify the types of approaches available to address  

Protocol for blind risk of bias assessment*: 
1. Agreeing specific sources of bias for each method 

2. Preparing specific risk of bias reporting template. 

This should include recording the causal question of 

each method and extent to which that addresses 

your causal question 

 

Protocol for blind risk of bias assessment*: 
3. Agreeing specific sources of bias for each method 

identified in the search 

4. Preparing specific risk of bias reporting template for 

these methods. This should include recording the 

causal question of each method and extent to which 

that addresses your causal question. 

Agreeing and writing analysis plan, including sensitivity 
analyses that might be used to explore/mitigate bias. 

Agreeing and writing data extraction tool and who will extract 
data. Agreeing and writing plans for pooling and integrating 
data from different approaches 
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Combining all of the above steps in a protocol and publishing 
that protocol. 

Combining all of the above steps in a protocol and publishing 
that protocol. 

Analysis of data as planned. Update search, extract data, pool and integrate results as 
planned. 

Interpretation of results and write up of paper Interpretation of results and write up of paper 

* This may include modification of some existing risk of bias tools and/or the need to develop new tools, where there are 

methods that are not (fully) covered by existing tools. 

 

3.6 Additional tutorial on mediation analysis in DataShield 
The recently developed DataSHIELD package dsMediation allows federated mediation 
analysis across multiple studies in a privacy-preserving way. The dsMediation package 
includes functionalities for mediation analysis involving a single mediator or multiple 
mediators. It alows four different approaches: the regression-based, the simulation-based, 
the weighting-based, and the imputation-based approach. Hence it includes nine functions 
mainly derived from three R packages: regmedint, mediation, and medflex. These functions 
provide an output for each individual study participating in the analysis and the analysts can 
meta-analyse the results using the native R packages, such as metaphor or meta. In the 
tutorial, the functions are applied to real data. Several scenarios are considered with 
different types of exposure, mediators and outcome (binary, categorical or continuous), and 
including or not including the interaction between the exposure and the mediators. A 
manuscript on this topic is in preparation. 
 

4. Conclusions 
We have provided in this deliverable a detailed summary of the five tutorials / educational 
papers that have been prepared within the context of LifeCycle to demonstrate the 
implementation in specific contexts of causal inference approaches and longitudinal data 
modelling. The ultimate aim of this work is to facilitate the adoption and use of these 
methods within and outside LifeCycle and to promote discussion on their advantages and 
limitations.  

 

5. Contribution of partners 
 UNITO: led the Task, led tutorials 2.2.1, 2.2.3, 2.2.4, and 2.2.6 

 UNIVBRIS: led tutorials 2.2.2 and 2.2.5 

 All partners: contributed to the selection of the topics for the tutorials 

 

6. Deviations from the original plan 
This deliverable has been fulfilled fully in line with the original plan as stated in the grant 
agreement.  
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7. Dissemination activities  
To reach the research community outside LifeCylce, four tutorials have been published as a 
journal article (combining longitudinal data from different cohorts) or archived preprints  
(mediation analysis, regression discontinuity, transportability). The main concepts of the 
fifth tutorial (triangulation) are summarised in a publicly available slide presentation. The 
tutorial on mediation analysis is under review in an international journal; the other tutorials 
will be soon submitted for publication. 
 
The conceptual frameworks and preliminary results of the tutorials were discussed at the 
General Assembly LifeCycle meetings: Barcelona 2018, life course trajectories; Copenhagen 
2019, mediation analysis; Bristol 2019, brief update on mediation analysis, regression 
discontinuity, transportability; Remote October 2020, life course trajectories, 
transportability; Remote May 2021, regression discontinuity; Remote October 2021, 
transportability; Paris 2022, triangulation.  
 
The main reference articles and educational material identified during the ongoing work on 
the tutorials were added to the LifeCycle method database (https://lifecycle.cpo.it) publicly 
available online through the Eu Child Cohort catalogue (see Deliverables 7.1 and 7.2). In the 
database, the LifeCycle tutorials and method review articles are searchable using a specific 
filter labelled “LifeCycle tutorials”, which currently lists 7 publicly available products:  

- Santos S, Zugna D, Pizzi C, Richiardi L. Sources of confounding in life course 

epidemiology. J Dev Orig Health Dis 2019;10:299-305. 

- Santos S, Maitre L, Warembourg C, Agier L, Richiardi L, Basagaña X, Vrijheid M. 

Applying the exposome concept in birth cohort research: a review of statistical 

approaches. Eur J Epidemiol. 2020;35:193-204. 

- Hughes RA, Tilling K, Lawlor DA. Combining longitudinal data from different cohorts 

to examine the life-course trajectory. Am J Epidemiol 2021;190:2680-2689. 

- Zugna D, Popovic M, Fasanelli F, Heude B, Scelo G, Richiardi L. Applied causal 

inference methods for sequential mediators, 18 May 2022, Preprint (Version 3) 

available at Research Square [https://doi.org/10.21203/rs.3.rs-965331/v3] 

- Popovic M, Zugna D, Richiardi L. Regression discontinuity design in perinatal 

epidemiology and birth cohort research. Preprint available at arXiv 

[https://arxiv.org/abs/2208.110472208.11047] 

- Scelo G, Zugna D, Richiardi L. Transporting results in an observational epidemiology 

setting: purposes, methods, and applied example, 24 August 2022, Preprint available 

at Research Square [https://doi.org/10.21203/rs.3.rs-1987165/v1] 

- Lawlor D. Triangulation Tutorial. Slide presentation. 2022 

The concepts, methods and/or examples described in the tutorials were also used to assist 
in the preparation of the following workshops (see Deliverable 7.5): (i) “Longitudinal 
modelling in the context of life-course studies”, Barcelona, 2018; (ii) “Mediation analysis”, 
Online, 2020 (videos available through the LifeCycle Youtube channel); (iii) “Transporting 

https://lifecycle.cpo.it/
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estimates across populations: why, when, and how?”, Online 2021 (videos available through 
the LifeCycle Youtube channel); (iv) “Mediation analysis with DataShield”, Paris, May 
2022. Analogously the discussions during the workshops contributed to the preparation of 
the tutorials.  
 
The results of the tutorials were presented at the following congress presentations and 
seminars: 

- Scelo G. Transportability of results in an observational study setting. XI National 

Congress of the Italian Society of Medical Statistics and Clinical Epidemiology 

(SISMEC). Remote, September 15th, 2021. 

- Popovic M , Zugna D, Gagliardi L, Richiardi L. Regression discontinuity design in 

lifecourse epidemiology. XI National Congress of the Italian Society of Medical 

Statistics and Clinical Epidemiology (SISMEC). Remote, September 16th, 2021. 

- Lawlor D. Triangulation in evidence synthesis. XLVI Congress of the Italian 

Epidemiology Association. Padova, June 30th, 2022. 

- Lawlor D. Triangulation – from selective qualitative comparisons to systematic 

quantitative integration. Seminar series of the Piedmont Referring Center for Cancer 

Epidemiology and University of Turin, Turin,  May 6th, 2022. 

- Lawlor D. Triangulating epidemiological evidence: From focused qualitative 

comparison to systematic qualitative integration.  Workshop on Triangulation of 

Evidence in Environmental Epidemiology organised by the US National Academy of 

Sciences Engineering and Medicine,  May 9th, 2022. 
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