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Executive summary  
Description of deliverable: The LifeCycle project has consistently observed evidence that 
changes in early-life stressors, such as cigarette smoking, maternal and paternal obesity, low 
socio-economic factors or psychosocial stress, are associated with later health of children. 
The present report presents the work done in LifeCycle on ‘DNA methylation changes as 
measures of early-life exposure’. The work reported here had two objectives: we have (i) 
explored if DNA methylation patterns can be used as markers of early-life stressors and (ii) 
further developed, harmonized and made epigenetic scores for smoking and biological age 
available in the LifeCycle catalogue to test reproducibility and their associations with early-
life stressors and long-term outcomes.     
 
Findings: Findings can be structured in three main areas: 
 
1) Harmonization and inclusion of DNA methylation scores in the LifeCycle catalogue: The 
DNA methylation scores for maternal smoking have been harmonized and can be calculated 
in DataShield to allow federated analyses and support re-use of FAIR data. The on-going 
projects are currently including multiple cohorts in DataShield and will provide the first 
evidence from large-scale meta-analyses of DNA methylation scores. We have developed a 
Bioconductor package that allows computation of several existing DNA methylation 
adult/childhood and gestational age clocks. 
 
2) Application of DNA methylation scores in evaluating the role of early-life stressors on 
lifecourse health: The analyses exemplify the predictive impact of DNA methylation and the 
usefulness of DNA-methylation based scores to study and understand the relationship 
between early life-stressors and exposure and health during the lifecourse. Specifically, we 
found that quitting maternal smoking before the third trimester of pregnancy, and possibly 
lowering smoking dose, may prevent differential DNA methylation in the newborns at CpGs 
associated with sustained smoking. Thirteen CpGs were identified to be most suitable for 
inferring smoking versus non-smoking status from blood. Numerous signatures specific to 
newborns along with many shared between newborns and adults were identified, which 
were enriched in xenobiotic metabolism pathways.  
 
3) DNA methylation age: Preliminary analysis showed maternal determinants of DNA 
methylation age estimates. Furthermore, another study exemplified an evidence-based 
approach to show persistent influences of paternal prenatal adversity mediated through 
DNA methylation age estimates in the offspring on their psycho-cardiometabolic co-
morbidities in adolescence.  
 
Next steps for research and policy: Some key articles arising from this team work have been 
published and the protocols are open-sourced. Some of the on-going projects are currently 
including multiple cohorts anlyzed via DataSHIELD to support robust evidence (or absence 
thereof) from large-scale meta-analyses of the utility of DNA methylation scores and DNA 
methylation age estimates to objectively measure early stress and their early health 
outcomes. Policy context: The identification of finite set of DNA methylation markers allows 
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a more accurate inference of smoking habit and prenatal exposure from blood, which we 
envision becoming useful in public health as well as in medical and forensic applications. 
The detection though DNA methylation may become a very safe (a blood drop can suffice) 
and cost effective measure of early stressors to reduce errors of recall associated with 
questionnaires and interviews.   
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1. Introduction 
Work package 8 of the LifeCycle Project focuses on using the DNA methylation and RNA 
expression data to define possible biological pathways or molecular signatures underlying 
the exposure to early-life stressors. The specific objective of Task 8.5 refers to WP8 
objective 3: To determine whether DNA methylation could be used as an accurate measure 
of early-life stressors. 
As it is described in the DoA, this task assesses if DNA methylation sites or patterns that are 
related to early-life stressors can accurately predict those exposed and can explain long 
term associations. This paradigm can be exemplified by two of our published works by 
Rauschert et al (1) and Parmar et al (2), previously reported in D8.3 (for review see also 
Rauschert et al 2020 (3)). 
 

2. Description of progress and results 
Below, we present the progress and results for this deliverable. There are multiple 
completed and ongoing projects under this task. For each completed project, we present a 
short description of the work performed. Following that, we briefly describe the ongoing 
projects 
 

2.1  Harmonization and inclusion of DNA methylation scores in the LifeCycle 
catalogue  

 

2.1.1 DNA methylation smoking scores 
Partner(s) involved: UWA (lead), ERASMUS, ISGLOBAL, UNIVBRIS, BTHFT, UMCG, UOC, 
INSERM, UOULU, LMU 
Summary of findings: The smoking score was developed with machine learning analysis by 
the UWA and UOULU partners to enable the quantification of DNA methylation present in 
children for CpGs associated with in utero exposure to maternal smoking. The DNAsmoke 
package was developed using net elastic regression algorithms to provide an easy method 
of calculating the score for LifeCycle partners with available 450K or EPIC array DNA 
methylation data. A Shiny app is used to perform the validation of the score (Figure 1). The 
work is available as an open access publication (1). 
 



 

 9    

 

 

 
 
Figure 1. Example of Shiny App output to measure the epigenetic materal smoking score 

 
The smoking score, with supporting variables, was included in the release of the outcome 
dictionary version 1.3 in Q2 2021. The majority of our participating partners have completed 
the score calculations and are in the process of loading the data into their respective servers 
(Table 1). 
 
Table 1. Status of the smoking score calculations by participating partners 

No Partners N 

1 ALSPAC Application submitted 

2 BiB Application submitted 

3 CHOP Approved, ongoing 

4 EDEN Approved, ongoing 

5 GECKO Approved, ongoing 

6 GEN R 1,380 

7 INMA 381 

8 HELIX Approved, ongoing 

9 NFBC 1986 546 

10 RAINE Study 995 

 
2.1.2  Biological age scores; methylclock 

Partner(s) involved: ISGLOBAL (lead), UOULU (lead), ERASMUS, UWA 
The work described below has been led by partners UOULU and ISGLOBAL. The 
Bioconductor package used to generate the methylclocks is available as an open access 
publication (4).  
Summary of findings: Ageing is a biological and psychosocial process related to diseases and 
mortality. It correlates with changes in DNA methylation (DNAm) in all human tissues. 
Therefore, epigenetic markers can be used to estimate biological age using DNAm profiling 
across tissues. 
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We developed a Bioconductor package that allows computation of several existing DNAm 
adult/childhood and gestational age clocks. Functions to visualize the DNAm age prediction 
versus chronological age and the correlation between DNAm clocks are also available as 
well as other features, such as missing data imputation of cell type estimates, that are 
required for DNAm age clocks. 
Availability and implementation: https://github.com/isglobal-brge/methylclock. 
package 
 

2.1.3 Biological age scores in DataShield; DSmethylclock 
Participating LifeCycle partners: UOULU (lead), ERASMUS, ISGLOBAL, UNIVBRIS, BTHFT, 
UMCG, UOC, NIPH, INSERM, LMU, UWA 
Summary of findings: Following this work, we further implemented the dsUploadMethyl 
function in DataSHIELD, which calculates the DNAm age estimates using the methylclock 
package and uploads the estimates to DataSHIELD. The function creates and uploads non-
repeated DNAm gestational age estimates based on four clocks (Knight(5), Bohlin(6), 
Mayne(7) and Lee(8)) and yearly repeated DNAmAge estimates based on seven clocks 
(Horvath(9), Hannum(10), Levine(11), BNN(12), skinHorvath(13), PedBE(14) and TL(15)). In 
addition, three age acceleration measures are provided for each clock: the raw difference 
between chronological age and epigenetic age, the residuals obtained after regressing 
chronological age on epigenetic age without and with adjustment for estimated cell counts. 
Currently, the following partners are involved: UOULU (lead), ERASMUS, ISGLOBAL, 
UNIVBRIS, UWA. We expect to include UNITO, UOC, INSERM, NIPH, BTHFT, UMCG, LMU in 
the future (Figure 2). 
 

 
Figure 2.  Availability of DNA methylation data in the LifeCycle cohorts 

 

2.2 Application of DNA methylation scoring in evaluating the role of early life 
stressors on lifecourse health 

Machine learning and clinical epigenetics: a review of challenges for diagnosis and 
classification (3) 

https://github.com/isglobal-brge/methylclock
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Partner(s) involved: UWA 
Summary of findings: Machine learning is a sub-field of artificial intelligence, which utilises 
large data sets to make predictions for future events. Although most algorithms used in 
machine learning were developed as far back as the 1950s, the advent of big data in 
combination with dramatically increased computing power has spurred renewed interest in 
this technology over the last two decades. Within the medical field, machine learning is 
promising in the development of assistive clinical tools for detection of e.g. cancers and 
prediction of disease. Recent advances in deep learning technologies, a subdiscipline of 
machine learning that requires less user input but more data and processing power, has 
provided even greater promise in assisting physicians to achieve accurate diagnoses  (Figure 
3). Within the fields of genetics and its sub-field epigenetics, both prime examples of 
complex data, machine learning methods are on the rise, as the field of personalised 
medicine is aiming for treatment of the individual based on their genetic and epigenetic 
profiles (Figure 4). We now have an ever-growing number of reported epigenetic alterations 
in disease, and this offers a chance to increase sensitivity and specificity of future 
diagnostics and therapies. Currently, there are limited studies using machine learning 
applied to epigenetics. They pertain to a wide variety of disease states and have used mostly 
supervised machine learning methods. 
 

 
Figure 3. Overview of the field of Artificial Intelligence and its subfield of machine learning 

 

 
Figure 4. Workflow for applying a machine learning algorithm 
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2.2.1 Timing and dose-specific associations of prenatal smoke exposure with 
newborn DNA methylation (16) 

Partner(s) involved: ERASMUS 
Summary of findings: We examined critical periods and doses of maternal smoking during 
pregnancy in relation to newborn DNA methylation, and associations of paternal smoking 
with newborn DNA methylation. 
This study was embedded in the Generation R Study. We assessed parental smoking during 
pregnancy using questionnaires. We analyzed associations of prenatal smoke exposure with 
newborn DNA methylation at 5915 known maternal smoking-related cytosine-phosphate-
guanine sites (CpGs) in 1261 newborns using linear regression. Associations with false 
discovery rate-corrected p-values < .05 were taken forward. 
Sustained maternal smoking was associated with newborn DNA methylation at 1391 CpGs, 
compared with never smoking. Neither quitting smoking early in pregnancy nor former 
smoking were associated with DNA methylation, compared with never smoking. Among 
sustained smokers, smoking ≥5, compared with <5, cigarettes/day was associated with DNA 
methylation at seven CpGs (Figure 5). Paternal smoking was not associated with DNA 
methylation, independent of maternal smoking status. 
Our results suggest that CpGs associated with sustained maternal smoking are not 
associated with maternal smoking earlier in pregnancy or with paternal smoking. Some of 
these CpGs show dose-response relationships with sustained maternal smoking. The third 
trimester may comprise a critical period for associations of smoking with newborn DNA 
methylation, or sustained smoking may reflect higher cumulative doses. Alternatively, 
maternal smoking limited to early pregnancy and paternal smoking may be associated with 
DNA methylation at specific other CpGs not studied here. 
Our results suggest that quitting maternal smoking before the third trimester of pregnancy, 
and possibly lowering smoking dose, may prevent differential DNA methylation in the 
newborns at CpGs associated with sustained smoking. If the relevance of DNA methylation 
for clinical outcomes is established, these results may help in counseling parents-to-be 
about quitting smoking. 
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Figure 5. DNA methylation levels in cord blood at the seven CpGs associated with maternal smoking dose 
 

2.2.2 Validated inference of smoking habits from blood with a finite DNA 
methylation marker set (17) 

Partner(s) involved: ERASMUS 
Summary of findings: Inferring a person’s smoking habit and history from blood is relevant 
for complementing or replacing self-reports in epidemiological and public health research, 
and for forensic applications. However, a finite DNA methylation marker set and a validated 
statistical model based on a large dataset are not yet available. Employing 14 epigenome-
wide association studies for marker discovery, and using data from six population-based 
cohorts (N=3764) for model building, we identified 13 CpGs most suitable for inferring 
smoking versus non-smoking status from blood with a cumulative Area Under the Curve 
(AUC) of 0.901 (Figure 6). Internal fivefold cross-validation yielded an average AUC of 
0.897±0.137, while external model validation in an independent population-based cohort 
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(N=1608) achieved an AUC of 0.911. These 13 CpGs also provided accurate inference of 
current (average AUCcrossvalidation 0.925±0.021, AUCexternalvalidation 0.914), former (0.766±0.023, 
0.699) and never smoking (0.830±0.019, 0.781) status, allowed inferring pack-years in 
current smokers (10 pack-years 0.800±0.068, 0.796; 15 pack-years 0.767±0.102, 0.752) and 
inferring smoking cessation time in former smokers (5 years 0.774±0.024, 0.760; 10 years 
0.766±0.033, 0.764; 15 years 0.767±0.020, 0.754). Model application to children revealed 
highly accurate inference of the true non-smoking status (6 years of age: accuracy 0.994, 
N=355; 10 years: 0.994, N=309), suggesting prenatal and passive smoking exposure having 
no impact on model applications in adults. The finite set of DNA methylation markers allows 
accurate inference of smoking habit, with comparable accuracy as plasma cotinine use, and 
smoking history from blood, which we envision becoming useful in epidemiology and public 
health research, and in medical and forensic applications. 
 

 
Figure 6. Cumulative AUC profile for smoking habit inference from blood based on the top 20 CpGs. 
The 20 CpGs were selected from previous EWASs on smoking habits and were tested in the model-building set (N=3764). 
Presented is the cumulative contribution of each of the selected 20 CpGs to the model-based smoking habit inference, 
shown as the AUC plotted against the number of CpGs included in the binary logistic regression model. In the model 
selection process, first all CpGs were included, and using backward elimination procedures, those with the lowest z-
statistic per model were removed one by one. After 13 CpGs, the AUC plateaus; therefore, and by considering the results 
from Chi squared testing, these 13 CpGs were used for further analyses. 

 
2.2.3 Comparison of smoking-related DNA methylation between newborns from 

prenatal exposure and adults from personal smoking (18) 
Partner(s) involved: ERASMUS, ISGLOBAL, UNIVBRIS, UMCG, NIPH, INSERM  
Summary of findings: Cigarette smoking influences DNA methylation genome-wide, in 
newborns from pregnancy exposure and in adults from personal smoking. Whether a 
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unique methylation signature exists for in utero exposure in newborns is unknown. We 
separately meta-analyzed newborn blood DNA methylation (assessed using Illumina450k 
Beadchip), in relation to sustained maternal smoking during pregnancy (9 cohorts, 5648 
newborns, 897 exposed) and adult blood methylation and personal smoking (16 cohorts, 
15907 participants, 2433 current smokers). 
Comparing meta-analyses, we identified numerous signatures specific to newborns along 
with many shared between newborns and adults. Unique smoking-associated genes in 
newborns were enriched in xenobiotic metabolism pathways  (Figure 7). Our findings may 
provide insights into specific health impacts of prenatal exposure on offspring. 
 

 
Figure 7. Heatmap of the biological pathways, significant at p-value cutoff of 0.05 in at least one of the two enrichment 
tests shown, functions enriched with newborn-specific genes, or functions enriched with genes shared between 
newborns and adults. For each pathway, the color coding is done to show the level of significance (based on p-values). 
Darker shades indicate higher level of significance. 
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2.2.4 Determination of saliva epigenetic age in infancy, and its association with 
parental socio-economic characteristics and pregnancy outcomes (19) 

Partner(s) involved: UNITO  
Summary of findings: Epigenetic age acceleration (AA) has been associated with adverse 
environmental exposures and many chronic conditions. We estimated, in the NINFEA birth 
cohort, infant saliva epigenetic age, and investigated whether parental socio-economic 
position (SEP) and pregnancy outcomes are associated with infant epigenetic AA. A total of 
139 saliva samples collected at on average 10.8 (range 7–17) months were used to estimate 
Horvath’s DNA methylation age. Epigenetic AA was defined as the residual from a linear 
regression of epigenetic age on chronological age. Linear regression models were used to 
test the associations of parental SEP and pregnancy outcomes with saliva epigenetic AA. A 
moderate positive association was found between DNA methylation age and chronological 
age, with the median absolute difference of 6.8 months (standard deviation [SD] 3.9). The 
evidence of the association between the indicators of low SEP and epigenetic AA was weak; 
infants born to unemployed mothers or with low education had on average 1 month higher 
epigenetic age than infants of mothers with high education and employment (coefficient 
0.78 months, 95% confidence intervals [CIs]: −0.79 to 2.34 for low/medium education; 0.96, 
95% CI: −1.81 to 3.73 for unemployment). There was no evidence for association of 
gestational age, birthweight or caesarean section with infant epigenetic AA (Figure 8). Using 
the Horvath’s method, DNA methylation age can be fairly accurately predicted from saliva 
samples already in the first months of life. This study did not reveal clear associations 
between either pregnancy outcomes or parental socio-economic characteristics and infant 
saliva epigenetic AA. 
 

 
Figure 8. Coefficient estimates with 95% CIs for the association of parental and familial socio-economic characteristics 
and pregnancy outcomes with infant saliva epigenetic age acceleration (months).  
Reference groups: parental high education (university or higher), parental employment, high income (ranked to ≥ 3rd 
quintile), 3–4 family members in the household, vaginal delivery. Model 1 adjustment (red): child’s sex, technical batch 
(chip), estimated saliva cell count types and child wheezing as a selection factor; Model 2 adjustment (blue): as Model 1 
and additional adjustment for maternal age and parity in analyses of socio-economic characteristics, and for maternal age, 
parity, maternal education and maternal pre-pregnancy BMI in analyses of pregnancy outcomes. Gestational age and 
birthweight were mutually adjusted in Model 2. 
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2.2.5 The effect of timing and cessation of maternal smoking upon the DNA 
methylation score 

Partner(s) involved: UWA (lead), ERASMUS, ISGLOBAL, UMCG, UOULU 
Summary of findings: In this project, the aim is to assess if there is an association between 
the DNA methylation smoking score and the timing of in-utero nicotine exposure during 
pregnancy. The outcome of this project will help to advise mothers as to when and whether 
the cessation of smoking is likely to prevent long term detriment to unborn child’s DNA. 
Status: A preliminary review of accessible partner data has shown promising results to date. 
As additional partners finalise the smoking score variables and upload the data (see above 
and Figure 9), a more robust assessment of trimester exposure to smoking will be available. 
 

 
Figure 9. Interim summary of the mean smoking score values by trimester exposure categories. 
 

 

2.3 DNA methylation age  
 

2.3.1 Maternal and paternal determinants of offspring DNA methylation age  
Partner(s) involved: UOULU (lead), ERASMUS, ISGLOBAL, UWA 
Summary of findings: The epigenetic age algorithms computed from DNA methylation 
arrays could represent biomarkers of the ageing process associated with the risk of chronic 
diseases. Variation in DNA methylation age may also mediate the relationship between 
early exposures and the risk of later-life diseases. This study analyses the associations of 
maternal and paternal exposures with DNA methylation age at birth and in childhood to 
detect possible parental determinants of epigenetic ageing in the offspring. Objective is to 
evaluate the associations of maternal and paternal smoking, BMI and age at birth with 
offspring DNA methylation age at birth and at various later ages.  
Status: Preliminary analyses have been conducted within INMA, HELIX, Generation R and 
NFBC1986 and they show associations mainly in maternal exposures and some interesting 
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differences between DNA methylation age estimates (Figure 10). Next steps are to generate 
and upload the DNA methylation estimates to DataSHIELD for all the cohorts and analyse 
them in DataSHIELD. 
 

 
Figure 10. Preliminary meta-analysis of association between parental exposures and selected DNA methylation age 
estimates in the offspring.  
Effect estimates are from meta-analysis of three cohorts participating to the preliminary analysis: HELIX at 8 years of age 
(N=1144), Generation R at 10 years of age (N=461) and NFBC1986 at 16 years of age (N=508). Model 1 is adjusted for sex 
and ethnicity, model 2 is adjusted for sex, ethnicity and other parent’s exposure and model 3 is adjusted for sex, ethnicity 
and all other parental exposures presented in the figure. All paternal exposures were not available for preliminary analysis 
in HELIX and father’s age was not available for NFBC1986 so only model 1 is shown for father’s exposures. TL, DNA 
methylation estimate for telomere length. 
 

2.3.2 Do DNA methylation scores mediate the association between maternal 
stressors and adolescent mental and cardio-metabolic co-morbidity? A path 
analysis study in NFBC1986 and the Raine study 

Partner(s) involved: UOULU (lead), UWA 
Summary of findings: Understanding the biological mechanisms that determine co-
morbidity patterns in adolescence is important as it may act as hub for distal health 
outcomes. The aim of the study is to explore latent patterns of prenatal adversity and 
adolescent psycho-cardiometabolic intermediary traits and further understand the linkage 
between them via epigenetic biomarkers. We used data of mother-child pairs at pregnancy 
and adolescence at 16-17yr of age from two prospective cohorts: Northern Finland Birth 
Cohort 1986 (NFBC1986) from Finland and Raine Study from Australia. Exploratory and 
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confirmatory factor analysis was applied to generate two different latent factor structures: 
a) paternal adversity using measures from pregnancy and, b) adolescence co-morbidities 
using psycho-cardiometabolic intermediary traits. Furthermore, two epigenetic scores were 
included: 1) PRS generated epigenetic smoking score from maternal smoking during 
pregnancy in our previous study and 2) DNA methylation clock markers (PhenoAge and 
Telomere Length). Firstly, the relationships between all the measures were assessed using a 
correlation matrix. Secondly, structural equation modelling (SEM) was used to investigate 
pathways from paternal adversity to adolescent co-morbidity factors, accounting for the 
mediating effect of epigenetic markers.  
Similar factor structure and correlation patterns were observed for paternal adversity in 
utero and adolescent comorbidities between both cohorts (P<0.001). We derived three 
latent factors for paternal adversity named as: Maternal BMI, Maternal lifestyle and 
Maternal SOP (socio-obstetric profile) and four latent factors for adolescent co-morbidities 
named as: BMI, Insulin Triglycerides, Blood Pressure and Mental traits. In the SEM 
pathways, stronger direct effects of the maternal BMI (NFBC: ß: 0.27; RAINE: ß: 0.39) and 
SOP (ß: -0.11) factors were observed on adolescent multimorbidity. The indirect effect of 
the paternal adversity factors through epigenetic markers was mediated by the PhenoAge 
methyl clock (NFBC: ß: 0.04; RAINE: ß: 0.14), showing consistent influences in both cohorts 
(P<0.001, Figure 11).  
The present study exemplifies an evidence-based approach validated in two cohorts to 
show persistent influences of paternal adversity mediated through epigenetic changes in 
the offspring on their co-morbidities in adolescence. 
Status: Manuscript submitted for publication. 
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Figure 1. Structural Equation Model (SEM) pathways in NFBC1986 and RAINE study describing the association between 
maternal stressors and adolescent co-morbidities. 
F1-4: Factor; BMI: Body Mass Index; BP: Blood Pressure; InTg: Insulin Triglyceride; SOP: Socio-obstetric Profile; and TL: 
Telomere Length. 

 

3. Conclusion 
These analyses as part of Task 8.5 exemplify the predictive impact of DNA methylation and 
the usefulness of DNA methylation based scores to study and understand the relationship 
between early life-stressors and exposure and health during the life-course. Importantly, 
the DNA methylation scores for maternal smoking have been harmonized and can be 
calculated in DataShield to allow federated analyses and support re-use of FAIR data. Some 
key articles arising from this team work have been published and the protocols are open-
sourced. The on-going projects are currently including multiple cohorts in DataShield and 
will soon provide the first evidence from large-scale meta-analyses of DNA methylation 
scores. 
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4. Contribution of partners 
The contribution of partner for each subproject is detailed below. Lead partners were 
responsible for developing the proposals and the analytical plan and generating the scripts 
for creating the scores. The partners contributed by generating the scores to add to the 
LifeCycle catalogue or to provide aggregated summary statistics for meta-analysis. In case of 
published articles, all partners reviewed and agreed upon the publication of the final version 
of the manuscripts. The report was jointly prepared by the leaders of the respective 
projects. 
 

 UOULU: Leader of the deliverable 8.5. Led the following studies: ‘Biological age scores; 
methylclock package,’ ‘Maternal and paternal determinants of offspring DNA 
methylation age’ and, ‘Do DNA methylation scores mediate the association between 
maternal stressors and adolescent mental and cardio-metabolic co-morbidity? A path 
analysis study in NFBC1986 and the Raine study’. Participated in the study on DNA 
methylation smoking score. 

 UWA: Led the following studies: ‘DNA methylation smoking scores’, ‘Machine learning 
and clinical epigenetics’, and ‘The effect of timing and cessation of maternal smoking on 
DNA methylation score’. Participated in the following studies: ‘Maternal and paternal 
determinants of offspring DNA methylation age’ and, ‘Do DNA methylation scores 
mediate the association between maternal stressors and adolescent mental and cardio-
metabolic co-morbidity? A path analysis study in NFBC1986 and the Raine study’. 

 ERASMUS: Led the following studies: ‘Timing- and Dose-Specific Associations of Prenatal 
Smoke Exposure With Newborn DNA Methylation’, ‘ Validated inference of smoking 
habits from blood with a finite DNA methylation marker set’. Participated in the 
following studies: DNA methylation smoking scores, Biological age scores; methylclock, 
‘Comparison of smoking-related DNA methylation between newborns from prenatal 
exposure and adults from personal smoking’, ‘The effect of timing and cessation of 
maternal smoking upon the DNA methylation score’, and ‘Maternal and paternal 
determinants of offspring DNA methylation age’. 

 UNITO: Led the study on ‘Determination of saliva epigenetic age in infancy, and its 
association with parental socio-economic characteristics and pregnancy outcomes’. 

 ISGLOBAL: Participated in the following studies: ‘DNA methylation smoking scores’, 
‘Biological age scores; methylclock’, ‘Comparison of smoking-related DNA methylation 
between newborns from prenatal exposure and adults from personal smoking’, ‘The 
effect of timing and cessation of maternal smoking upon the DNA methylation score’, 
and ‘Maternal and paternal determinants of offspring DNA methylation age’. 

 UMCG: Participated in the following studies: The effect of timing and cessation of 
maternal smoking upon the DNA methylation score’ and ‘Comparison of smoking-
related DNA methylation between newborns from prenatal exposure and adults from 
personal smoking.’ 

 UNIVBRIS: Participated in ‘Comparison of smoking-related DNA methylation between 
newborns from prenatal exposure and adults from personal smoking.’ 
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 NIPH: Participated in the ‘Comparison of smoking-related DNA methylation between 
newborns from prenatal exposure and adults from personal smoking’. 

 INSERM: Participated in the ‘Comparison of smoking-related DNA methylation between 
newborns from prenatal exposure and adults from personal smoking’. 

 

5. Deviations from the original plan 
This deliverable has been fulfilled fully in line with the original plan as state in the Grant 
Agreement. 
 

6. Dissemination activities 
Findings generated under task 8.5 have been published in peer-reviewed journals and can 
be accessed online. Findings have been presented as oral and poster presentation at 
international conferences and meetings. Further publications generated from the data and 
work in progress will be deposited in relevant repositories in accordance with the principles 
of open science. 
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